[image: image53.jpg][image: image54.wmf]Oracle Application Server

Oracle

10

g

Web Tier

Data Access Object

EJB Tier

EJBs

HTML

,

HTTP

/

S

,

XML

JDBC

HTML

,

JavaScript

Web Browser

Server

1

Server

2

Delegate

Oracle HTTP Server

HTTP Daemon

Front Controller

(

Servlet

)

Presentation

Components

(

JSP Pages

,

JavaBeans

)

RequestHandler

HTTPServletRequest

Transfer Object

Transfer Object

Transfer Object

RequestDispatcher

[image: image55.emf]1: send request

1.1: delegate request

ClientControllerRequestHandlerViewHelper

1.1.1: forward request

2: send request

2.1: delegate request

2.1.1: process request

2.1.1.1: return results

2.1.2: forward request

[image: image56.emf]1: request service

1.1: invoke service

ClientBusinessDelegateBusinessServiceDataAccessObject

1.1.2: return response

1.2: getData

1.2.1: return data

1.1.2: return response

[image: image57.jpg]

Revision Chart

Please provide a description of the change as it relates to the new release of the document. Attach any identifying release notes and functionality descriptions relevant to the new issue and document serial number.

Naming scheme for the document serial number follows the first two initials of the document purpose (e.g. SRS, two-digit month, four-digit year, v, and a two-digit version number.

	Version Number
	Primary Author(s)
	Description of Version
	Date Completed

	1.0
	Natoma Technologies, Inc.
	Initial Version
	

	1.1
	Christie Borchin
	Modified references
	8/8/2006

	1.2
	Natoma Technologies, Inc.
	Modified Section 6 to reflect current MVC implementation practice
	1/22/2007

	1.3
	Natoma Technologies, Inc.
	Modified Section 8.5 Data Validation
	3/2/2007

Table of Contents

31.
Introduction

1.1
Purpose
3
1.2
Scope
3
1.3
References
3
2.
Design Goals and Constraints
3
2.1
Design Goals
3
2.2
Design Constraints
3
3.
General Design and Implementation Guidelines
3
3.1
Requirements Definition
3
3.2
Application Design Overview
3
3.3
J2EE MVC Architecture
3
3.4
Design Patterns
3
3.5
Transaction Management
3
3.6
Fault Management
3
3.7
Software Distribution
3
4.
Requirements Definition
3
4.1
Requirements Definition Overview
3
4.2
User Requirements
3
4.3
Business Requirements
3
4.4
Technical Requirements
3
5.
Application Design Overview
3
5.1
Design Approach
3
5.2
User Interface (UI) Design
3
5.3
Web Site Design
3
6.
Architecture Design Guidelines
3
6.1
Model-View-Controller (MVC)
3
7.
Design Patterns
3
7.1
Front Controller
3
7.2
Business Delegate
3
7.3
Composite View
3
7.4
View Helper
3
7.5
Transfer Object
3
7.6
Data Access Object
3
7.7
Pattern Implementation with MVC
3
8.
Client Tier Design Guidelines
3
8.1
Protocols
3
8.2
Content Format
3
8.3
Data Retrieval
3
8.4
Data Caching
3
8.5
Data Validation
3
8.6
Data Downloading
3
9.
Web Tier Design Guidelines
3
9.1
Dynamic Content Creation
3
9.2
Web Tier Components
3
10.
Enterprise JavaBeans (EJB) Tier Guidelines
3
10.1
Stateless Session Beans
3
10.2
Entity Beans
3
10.3
Stateful Session Beans
3
10.4
Message Driven Beans
3
11.
Database Guidelines
3
11.1
Triggers
3
11.2
Stored Procedures
3

J2EE Design Guidelines
1. Introduction

1.1 Purpose

The purpose of this document is to establish design guidelines, standards and conventions for developing J2EE applications at the California Department of Insurance.

1.2 Scope

This document applies to all projects developed using Java 2 Platform, Enterprise Edition (J2EE) technology.

1.3 References

· CDI System Development Methodology
· ADAM Development Standards
· Project Management Methodology
· CDI Java Coding Standards
· Public Website Style Guide v2.2
· CDI Web Application Style Guide v1.2

2. Design Goals and Constraints

During the life cycle of a typical J2EE development project there are key requirements and system constraints that have a significant bearing on the design of the application. They are:

2.1 Design Goals

· Maximize the opportunities for code reusability

· Separation of business logic from UI/presentation logic

· Easily identify the responsibility of each object (what the object represents and what it must accomplish)

· Divide development effort along skill lines

· Ease of migration from the web-centric portions of the system to EJB-centric design

2.2 Design Constraints

· Oracle Application Server is the current standard for the J2EE enterprise application server

· Oracle Database 10g is the current database standard

· All web application functions must be available through CDI-IT supported web browsers

· Performance and load requirements, as documented in a projects Software Design Document, must be taken into consideration during application design

· Conformance with existing JEL UI guidelines

3. General Design and Implementation Guidelines

3.1 Requirements Definition

This section discusses the guidelines for generating business and technical requirements and the generation of the requirements deliverables.
3.2 Application Design Overview

This section discusses the guidelines for generating business and technical requirements and the generation of design deliverables (documents, prototypes, etc).
3.3 J2EE MVC Architecture

This section discusses implementation of the MVC Architecture using the Java 2, Enterprise Edition (J2EE) platform. Covered in this section are:

· Implementation of the MVC Architecture

· Client Tier Guidelines

· Web Tier Guidelines

· EJB Tier Guidelines
3.4 Design Patterns

This section describes the J2EE Design Patterns that should be considered for implementation on all CDI web applications. This section does not cover all available design patterns, and does not discourage the use of patterns not covered.
3.5 Transaction Management

Transaction management is a mechanism for simplifying the development of distributed multi-user enterprise applications. It is also one of the standard services offered by the J2EE platform. By enforcing strict rules on an application's ability to access and update data, transaction management ensures data integrity.
3.6 Fault Management

Fault Management deals with the aspect of handling application errors and system exceptions. Application errors are intended for users of the system and need to provide information understandable by a user, whereas system exceptions are intended for a system administrator, so they need to be readable by those maintaining the runtime system.
3.7 Software Distribution

Software distribution deals with the process of compiling, packaging, and deploying an Enterprise Application.
4. Requirements Definition

4.1 Requirements Definition Overview
The goal of the Requirements is to describe what the system should do and allows the developers and the customer to agree on that description. To achieve this, analysts elicit, organize, and document required functionality and constraints; track and document tradeoffs and decisions. Actors are identified, representing the users, and any other system that may interact with the system being developed. Use cases are identified, representing the behavior of the system. Because use cases are developed according to the actor's needs, the system is more likely to be relevant to the users.
4.2 User Requirements

User requirements list the tasks and goals of the user or consumer. User requirements are intended to make the tool or product faster, easier to use, and less error prone.
Using requirements modeling techniques, a deep understanding of business objectives and desired outcomes of the specific project is gained. This is done by meeting with business experts to identify business and functional requirements for the system. The current operational environment (including systems, database, and processes) is analyzed and documented. Business needs and requirements are documented and mapped against the defined features and functionality of the new system.
Requirements are defined through the use of Joint Application Design (JAD) sessions. The JAD session attendees must include:

· The business team (business analysts)

· Members of the development team

· Members of the test team

An understanding of current CDI development and web presentation standards must be understood by the development team when conducting JAD sessions. Resulting from the JAD sessions will be the detailed requirements captured in the form of one or more of the following documentation:

· Software Requirement Specification (SRS)

The SRS is a complete description of the behavior of the system to be developed. It may include a set of use cases that describe all of the interactions that the users will have with the software. In addition to use cases, the SRS contains functional requirements and nonfunctional requirements.

Functional requirements define the internal workings of the software: that is, the calculations, technical details, data manipulation and processing, and other specific functionality that shows how the use cases are to be satisfied.

Nonfunctional requirements impose constraints on the design or implementation (such as performance requirements, quality standards, or design constraints). Nonfunctional requirements include business requirements and technical requirements.

· Use Cases
A use case is a technique for capturing the potential requirements of a new system or software change. Each use case provides one or more scenarios that convey how the system should interact with the end user or another system to achieve a specific business goal. Use cases typically avoid technical jargon, preferring instead the language of the end user or domain expert. Use cases are often co-authored by Business Analysts and end users. Use cases are strongly encouraged for documenting business requirements.

4.3 Business Requirements

Business requirements list the goals of the business. At the highest level, these goals are to increase revenue, decrease costs, improve data management, increase knowledge transfer, improve efficiency, and so on.

4.4 Technical Requirements

Technical requirements are the hardware and software integration issues such as security, compatibility with existing systems, performance requirements, and so on. In a product manufacturing example, technical requirements would be manufacturing requirements, or the conditions, processes, materials, and tools required to get the product from the design board to the shipping dock.
5. Application Design Overview

5.1 Design Approach

This section covers the approach for creating a design for project application and the resulting design deliverables. The goal of the design is to show how the system will be realized in the implementation phase. The application design serves as an abstraction of the source code; that is, the application design acts as a 'blueprint' of how the source code is structured and written.
The CDI development staff and contractors/consultants doing development work for CDI will use CDI-IT and industry standard Object Oriented technologies and concepts during the design phase of development project. During the design phase, Uniform Modeling Language (UML) techniques and diagrams must be used. The main deliverable resulting from the design phase is a Software Design Document (SDD).

The SDD is used to document the architecture and design of the system. It is used to gather and communicate all of the architectural decisions made during the design phase. The SDD provides a comprehensive architectural overview of the system, using a number of different views to depict different aspects of the solution. It is intended to capture and convey the significant architectural decisions which have been made regarding the system. Included in the SDD are the following models:

· Use Case Model

A Use Case Model describes a system’s functional requirements in terms of use cases. A Use Case Model is a summary of the Use Cases, with the goal of identifying key actors and key functional requirements.

· Analysis Model

The analysis model provides an initial component structure for the system, abstracting away low-level design details. The Analysis Model depicts the translation of application requirements (use cases) into a high level technical representation of the components required to build the system. Components used in the Analysis Model include: Boundary Objects (web pages, external interfaces, web services, etc.), Entity Objects (User, Account, License, etc.), and Control Objects (Data Access Objects, Validation Objects, Controller/Servlet Objects, etc.).

The Analysis Model also provides a starting point for identifying high level packages and the grouping of components into these packages. Further refinement of the packages occur during the object modeling phase of the design process.

· Object Model

An object model is a collection of descriptions of classes or interfaces, together with their state (variables), member functions (methods), and class-static operations. The object model illustrates the major concepts identified in the Analysis Model. These concepts are modeled as objects and identify the relationships between the objects.

· Data Model

A data model is a collection of descriptions of data structures (entities), their contained fields, and field characteristics (attributes).
Optionally:

· Functional Specifications

Functional Specifications are intended to provide a partitioned view of the application and is an extension of the SDD. Where the SDD covers global design aspects of the system, the a Functional Specification provide a more detailed design of a specific function.

UML diagrams such as Class and Sequence diagrams are created using Visio.
5.2 User Interface (UI) Design

A graphic representation or page mockups of the application should be created. The goal of this deliverable is to gauge user acceptance of the proposed graphical layout, information architecture, and functionality of the site as well as to refine the design of the system. The graphic representation/page mockups must take the current CDI JEL standards into consideration when being developed.

5.3 Web Site Design

An HTML prototype should be developed from the results of the approved graphic representation. The goal of the HTML prototype is to provide the users with a near realistic view of how the system will look and perform, from a usability standpoint. The HTML prototype must take the current CDI JEL standards into consideration when being developed.

.

6. Architecture Design Guidelines

The architecture and development of CDI web applications and/or web services will follow and implement the J2EE specification and technologies. The most commonly used J2EE technologies used when developing applications at CDI include: Java, JavaServer Pages (JSP), JavaServer Pages Standard Tag Library (JSTL), JavaBeans, and Java Database Connectivity (JDBC). Based on application requirements, other J2EE technologies used may include Enterprise Java Beans (EJBs), Web Services technology, and industry standard XML processing technologies.

Other technologies not discussed in this document must gain prior CDI approval before such technologies are used or introduced into the CDI technology library.

The guiding principle for application design at CDI is the Model-View-Controller (MVC) architecture. The remainder of this section discusses implementation of the MVC architecture at CDI. Section 7 of this document covers the J2EE design patterns used to implement this architecture.
6.1 Model-View-Controller (MVC)

In accordance with Sun Microsystems and industry standard recommendations, the Model-View-Controller (MVC) architecture will be implemented for CDI interactive web applications and/or web services. This section provides guidelines on how to build the components that are contained within the MVC architecture.

6.1.1.1 Model
The model represents the data on which the application is based. Data Access Objects (DAOs) are the key contributing class for performing data access functionality (see the DAO Pattern later in this document). DAOs retrieve data from the defined data sources, and working together with Transfer Object (TO) classes, transport data between the different application tiers.

Stateless Session Beans may be used to encapsulate DAO functionality. Using DAOs inside session beans partially simulates the persistent nature of entity beans without incurring the overhead of using entity beans. The major benefit of using this design approach is that the DAO can take advantage of the transactional services provided by EJBs. EJB implementation guidelines are discussed later in this document.

DAOs are called exclusively from Business Delegates. This is particularly import where data modification is involved. Since Business Delegate classes implement business rules, such as data validation, going through a Business Delegate to update data will insure that the same business rules are executed whenever data is updated.

6.1.1.2 View
The implementation of the view is contained completely within the Web tier. Three types of components should be used to implement the view: JSP pages, JSTL, and JavaBeans components.

The view layer implements a templating mechanism to provide a consistent look and feel of all pages within the application. A modular approach to designing the presentation layer will be taken with the goal of separating content from business/application logic as much as possible. Another goal of this approach is to maximize the reuse of presentation components.

JSP pages are used for dynamic generation of HTML responses. The use of JSTL will allow for easy integration of JSP pages and JavaBeans components. JSTL is also used to encapsulate all presentation logic. This will allow for a modular system and provide greater opportunities for component reuse.

JavaBeans components facilitate communications between the JSP pages and the model. JSP pages use the beans to read the model data, which is then rendered into HTML. An alternative design approach is to use JSTL, Transfer Objects, and HTTPServletRequest variables. With this implementation, data is stored in HTTPServletRequest session or request variables in the form of a Transfer Object class and accessed using JSTL and the JSPs.
Using JSTL and JavaBeans components will greatly reduce the amount of scriplet code in a JSP. Careful consideration should be given whenever scriplet code is introduced in a JSP.

6.1.1.3 Controller

The controller is responsible for taking data posted in an HTTP request, converting the request into a business event, and passing the request to an appropriate request handler. The request handler interprets the request and calls a delegate responsible for completing the requested event.

The components that make up the controller include a Java servlet front controller and one or move Java “handler” classes which take as arguments, the HTTPSevletRequest and HTTPServletResponse objects.
The handlers are responsible for retrieving data from the web pages using the HTTPServletRequest getParameter() method, loading the data into transfer objects, and passing the transfer object to an appropriate business delegate. Handler classes also have the responsibility of creating, updating, and destroying HTTPSevletRequest variables.
The delegate handles all business logic related to validating requests and updating the model. The delegate returns an updated model or a collection of updated models to the request handler. The request handler then sends the model update events to the respective JavaBeans components. The JSP pages then use the JavaBeans, or JSTL, and render the data into HTML.

6.1.1.4 MVC Implementation

[image: image58.wmf]Oracle Application Server

Oracle

10

g

Web Tier

Data Access Object

EJB Tier

EJBs

HTML

,

HTTP

/

S

,

XML

JDBC

HTML

,

JavaScript

Web Browser

Server

1

Server

2

Delegate

Oracle HTTP Server

HTTP Daemon

Front Controller

(

Servlet

)

Presentation

Components

(

JSP Pages

,

JavaBeans

)

RequestHandler

HTTPServletRequest

Transfer Object

Transfer Object

Transfer Object

RequestDispatcher

The diagram above illustrates the MVC architecture implementation at CDI.
7. Design Patterns
A design pattern describes a proven solution to a recurring design problem, placing particular emphasis on the context of the problem, and describing the consequences and impact of the solution.

Design patterns help to solve common problems with J2EE and avoid the expensive mistakes often made in J2EE projects. In addition to providing solutions to common design problems, patterns describe how to design distributed architectures, how to design and develop an efficient data access strategy, and how to design a clean and maintainable web interface.

This section describes the J2EE Design Patterns that should be considered for implementation on all CDI web applications.

As a guideline, don't make a checklist covering the patterns your architecture requires. Instead, employ such patterns where appropriate based on your project's specific challenges. Many developers mistakenly believe that their products will improve if they use more patterns—or if they use all of them. That, however, is not the case. Use discretion and finesse when deciding which patterns to employ and how to use them together.

7.1 Front Controller

7.1.1 Context

The presentation-tier request handling mechanism must control and coordinate processing of each user across multiple requests. Such control mechanisms may be managed in either a centralized or decentralized manner.

7.1.2 Problem

The system requires a centralized access point for presentation-tier request handling to support the integration of system services, content retrieval, view management, and navigation. When the user accesses the view directly without going through a centralized mechanism, two problems may occur:

· Each view is required to provide its own system services, often resulting in duplicate code.

· View navigation is left to the views. This may result in commingled view content and view navigation.

Additionally, distributed control is more difficult to maintain, since changes will often need to be made in numerous places.

7.1.3 Solution

Use a controller as the initial point of contact for handling a request. The controller manages the handling of the request, including invoking security services such as authentication and authorization, delegating business processing, managing the choice of an appropriate view, handling errors, and managing the selection of content creation strategies.

The controller provides a centralized entry point that controls and manages Web request handling. By centralizing decision points and controls, the controller also helps reduce the amount of Java code embedded in a JSP page.

Centralizing control in the controller and reducing business logic in the view promotes code reuse across requests. It is a preferable approach to the alternative, embedding code in multiple views, because that approach may lead to a more error-prone, reuse-by-copy- and-paste environment.

Typically, a controller coordinates with a dispatcher component. Dispatchers are responsible for view management and navigation. Thus, a dispatcher chooses the next view for the user and vectors control to the resource. Dispatchers may be encapsulated within the controller directly or can be extracted into a separate component.

While the Front Controller pattern suggests centralizing the handling of all requests, it does not limit the number of handlers in the system, as does a Singleton. An application may use multiple controllers in a system, each mapping to a set of distinct services.

7.1.4 Front Controller Implementation

Implement a front controller using the Servlet Front Strategy. This strategy suggests implementing the controller as a servlet. Though semantically equivalent, it is preferred to the JSP Front Strategy. The controller manages the aspects of request handling that are related to business processing and control flow. These responsibilities are related to, but logically independent of, display formatting, and are more appropriately encapsulated in a servlet rather than in a JSP page.

[image: image59.emf]1: send request

1.1: delegate request

ClientControllerRequestHandlerViewHelper

1.1.1: forward request

2: send request

2.1: delegate request

2.1.1: process request

2.1.1.1: return results

2.1.2: forward request

The Servlet Front Strategy does have some potential drawbacks. In particular, it does not leverage some of the JSP runtime environment utilities, such as automatic population of request parameters into helper properties. Fortunately, this drawback is minimal because it is relatively easy to create or obtain similar utilities for general use. There is also the possibility that the functionality of some of the JSP utilities may be included as standard servlet features in a future version of the servlet specification.

Front Controller Sequence Diagram

7.1.4.1 Controller

The controller is the initial contact point for handling all requests in the system. The controller may delegate to a helper to complete authentication and authorization of a user or may be the initial contact from an external authenticating service. The controller is implemented by using the servlet-mapping tag in the web deployment descriptor.

7.1.4.2 RequestHandler
A request handler is responsible for view management and navigation, managing the choice of the next view to present to the user, and providing the mechanism for vectoring control to this resource.

A request handler is implemented as a separate component working in coordination with the controller. The controller passes the request and response objects to the request handler when passing control to the handler. The request handler interrogates the request object to determine the type of action the user has requested to perform.

The request handler uses the RequestDispatcher object (supported in the servlet specification) and encapsulates some additional processing. Multiple request handlers may be used, based on the requirements and functionality of the system.

7.1.4.3 Helper

A helper is responsible for helping a view or controller complete it’s processing. Thus, helpers have numerous responsibilities, including gathering data required by the view and storing this intermediate data, in which case the helper is sometimes referred to as a value bean. Additionally, helpers may adapt this data for use by the view. Helpers can make service requests for data from the view by simply providing access to the raw data or by formatting the data as Web content.

A view may work with any number of helpers, which are typically implemented as JavaBeans components (JSP 1.0+) and custom tags (JSP 1.1+). Additionally, a helper may represent a Command object, a delegate (Business Delegate is covered later in this lesson), or an XSL Transformer, which is used in combination with a stylesheet to adapt and convert the model into the appropriate form.

7.2 Business Delegate

7.2.1 Context

A multi-tiered, distributed system requires remote method invocations to send and receive data across tiers. Clients are exposed to the complexity of dealing with distributed components.

7.2.2 Problem

Presentation-tier components interact directly with business services. This direct interaction exposes the underlying implementation details of the business service application program interface (API) to the presentation tier. As a result, the presentation-tier components are vulnerable to changes in the implementation of the business services: When the implementation of the business services change, the exposed implementation code in the presentation tier must change too.

Additionally, there may be a detrimental impact on network performance because presentation-tier components that use the business service API make too many invocations over the network. This happens when presentation-tier components use the underlying API directly, with no client-side caching mechanism or aggregating service.

Lastly, exposing the service APIs directly to the client forces the client to deal with the networking issues associated with the distributed nature of Enterprise JavaBeans (EJB) technology.
7.2.3 Solution

Use a Business Delegate to reduce coupling between presentation-tier clients and business services. The Business Delegate hides the underlying implementation details of the business service, such data access facilities or lookup and access details of the EJB architecture.

The Business Delegate acts as a client-side business abstraction; it provides an abstraction for, and thus hides, the implementation of the business services. Depending on the implementation strategy, the Business Delegate may shield clients from possible volatility in the implementation of the business service API. Potentially, this reduces the number of changes that must be made to the presentation-tier client code when the business service API or its underlying implementation changes.

However, interface methods in the Business Delegate may still require modification if the underlying business service API changes. Admittedly, though, it is more likely that changes will be made to the business service rather than to the Business Delegate.

Implementing this pattern may cause a small amount of additional upfront work but the additional work will provide considerable benefits. The main benefit is hiding the details of the underlying service. For example, the client can become transparent to validation or naming and lookup services. The Business Delegate also handles the exceptions from the business services, such as SQL exceptions, java.rmi.Remote exceptions, Java Messages Service (JMS) exceptions and so on. The Business Delegate may intercept such service level exceptions and generate application level exceptions instead. Application level exceptions are easier to handle by the clients, and may be user friendly. The Business Delegate may also transparently perform any retry or recovery operations necessary in the event of a service failure without exposing the client to the problem until it is determined that the problem is not resolvable. These gains present a compelling reason to use the pattern.

Another benefit is that the delegate may perform a series of complex validation rules or calculate a series of algorithms. A client call to the delegate insures that the same set of rules or algorithms are processed in the correct order and removes the burden from the client.

A Business Delegate may use a component called the Lookup Service. The Lookup Service is responsible for hiding the underlying implementation details of the business service lookup code. The Lookup Service may be written as part of the Delegate, but it is recommended that it be implemented as a separate component.

When the Business Delegate is used with a Session Facade, typically there is a one-to-one relationship between the two. This one-to-one relationship exists because logic that might have been encapsulated in a Business Delegate relating to its interaction with multiple business services (creating a one-to-many relationship) will often be factored back into a Session Facade.

Finally, it should be noted that this pattern could be used to reduce coupling between other tiers, not simply the presentation and the business tiers.

7.2.4 Implementation

The Business Delegate exposes an interface that provides clients access to the underlying methods of the business service API. In this strategy, a Business Delegate provides proxy function to pass the client methods to the service it is encapsulating. The Business Delegate may perform a business service, such as input validation, and based on the results of the business service, perform a data access call.

[image: image60.emf]1: request service

1.1: invoke service

ClientBusinessDelegateBusinessServiceDataAccessObject

1.1.2: return response

1.2: getData

1.2.1: return data

1.1.2: return response

Business Delegate Sequence Diagram
7.3 Composite View

7.3.1 Context

Sophisticated Web pages present content from numerous data sources, using multiple sub views that comprise a single display page. Additionally, a variety of individuals with different skill sets contribute to the development and maintenance of these Web pages.

7.3.2 Problem

Instead of providing a mechanism to combine modular, atomic portions of a view into a composite whole, pages are built by embedding formatting code directly within each view. Modification to the layout of multiple views is difficult and error prone, due to the duplication of code.

7.3.3 Solution

Use composite views that are composed of multiple atomic subviews. Each component of the template may be included dynamically into the whole and the layout of the page may be managed independently of the content.

This solution provides for the creation of a composite view based on the inclusion and substitution of modular dynamic and static template fragments. It promotes the reuse of atomic portions of the view by encouraging modular design. It is appropriate to use a composite view to generate pages containing display components that may be combined in a variety of ways. This scenario occurs, for example, with portal sites that include numerous independent subviews, such as news feeds, weather information, and stock quotes on a single page. The layout of the page is managed and modified independent of the subview content.

Another benefit of this pattern is that Web designers can prototype the layout of a site, plugging static content into each of the template regions. As site development progresses, the actual content is substituted for these placeholders.

See Section 10 for implementation of the Composite View design pattern.

7.3.4 Implementation

7.3.4.1 Layout Design
The JEL standard must be followed when performing web page layout design.

As stated earlier in this document, the user interface implements a templating mechanism to provide a consistent look and feel for all pages. The UI template consists of the following components:

· a common banner

· a navigation menu

· a content body

· a footer

The content body is a template which consists of:

· a page title

· an optional page navigation bar

· a data section

The template itself is a JSP page, with parameters for the parts that need to change with each page. The template includes a parameter for each of the components listed above.

A web page is completely characterized by identifying the template page, and the parameters to pass to the template. The set of parameters that completely define a page are referred to as the screen definition.

The code sample below demonstrates the use of a template and the implementation of the parameters.

index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<%@ page contentType="text/html;charset=windows-1252"%>

<%
 String pageIncl=request.getParameter("content");

 String pageTitle = null;

 if (pageIncl != null) {

 if (pageIncl.equals("pageOne")) {

 pageIncl = "pageOne.jsp";

 pageTitle = "Page One";

 } else if (pageIncl.equals("pageTwo")) {

 pageIncl= "pageTwo.jsp";

 pageTitle = "Page Two";

}

} else {

 pageIncl = "login.jsp";

 pageTitle = "Login";

}

%>
<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>

 <title><%=pageTitle%></title>

 </head>

 <body>

 <table border=1 cellpadding="5" width="750">

 <tr>

 <td colspan="2" width="100%">

 <jsp:include page="header.jsp" flush="true"/>

 </td>

 </tr>

 <tr>

 <td width="130" valign="top">

 <jsp:include page="sideNavBar.jsp" flush="true"/>

 </td>

 <td width="620">

 <jsp:include page="<%=pageIncl%>" flush="true"/>

 </td>

 </tr>

 <tr>

 <td colspan="2" width="100%">

 <jsp:include page="footer.jsp" flush="true"/>

 </td>

 </tr>

 </table>

</body>

</html>

The code sample above would render the page layout below:

	Header/Banner
coinHeader.jsp

	SideNavBar

coinSideNavBar.jsp
	Main Conent
<%=pageIncl%>

	Footer

coinFooter.jsp

7.4 View Helper

7.4.1 Context

The system creates presentation content, which requires processing of dynamic business data.

7.4.2 Problem

Presentation tier changes occur often and are difficult to develop and maintain when business data access logic and presentation formatting logic are interwoven. This makes the system less flexible, less reusable, and generally less resilient to change.

Intermingling the business and system logic with the view processing logic reduces modularity and also provides a poor separation of roles among Web production and software development teams.

7.4.3 Solution

A view contains formatting code, delegating its processing responsibilities to its helper classes, implemented as JavaBeans or custom tags. Helpers also store the view's intermediate data model and serve as business data adapters.

Encapsulating business logic in a helper instead of a view makes an application more modular and facilitates component reuse. Multiple clients, such as controllers and views, may leverage the same helper to retrieve and adapt similar model state for presentation in multiple ways. The only way to reuse logic embedded in a view is by copying and pasting it elsewhere. Furthermore, copy-and-paste duplication makes a system harder to maintain. A fix to a bug in the original view potentially needs to be corrected in multiple places. Also, any changes to the original view may have to applied in multiple places as well.

A signal that one may need to apply this pattern to existing code is when scriptlet code dominates the JSP view. The overriding goal when applying this pattern, then, is the partitioning of business logic outside of the view. While some logic is best encapsulated within helper objects, other logic is better placed in a centralized component that sits in front of the views and the helpers-this might include logic that is common across multiple requests, such as authentication checks or logging services, for example.

The View Helper pattern focuses on recommending ways to partition your application responsibilities.

7.4.4 Implementation

7.4.4.1 JavaBean Helper Implementation
The helper is implemented as a JavaBean. Using helpers results in a cleaner separation of the view from the business processing in an application, since business logic is factored out of the view and into the helper component. In this case the business logic is encapsulated in a JavaBean, which aids in content retrieval and adapts and stores the model for use by the view.

Using the JavaBean Helper Strategy requires less upfront work than does the Custom Tag Helper Strategy, since JavaBeans are more easily constructed and integrated into a JSP environment. Additionally, even novice developers understand JavaBeans. This strategy is also easier from a manageability standpoint, since the only resulting artifacts are the completed JavaBeans.

7.4.4.2 Custom Tag Helper Implementation
The helper is implemented as a custom tag (JSP 1.1+ only). In this case the business logic is encapsulated in a custom tag component, which may aid in content retrieval and adapts the model for use by the view.

Using the Custom Tag Helper Strategy requires more upfront work than does the JavaBean Helper Strategy, since custom tag development is moderately complicated relative to JavaBean development. Not only is there more complexity in the development process, but there is much more complexity with respect to integrating and managing the completed tags. To use this strategy, the environment must be configured with numerous generated artifacts, including the tag itself, a tag library descriptor, and configuration files.
This strategy does offer greater flexibility and provides even greater opportunity to isolate complex business logic from the view.

7.5 Transfer Object

7.5.1 Context

Application clients need to exchange data between tiers.
7.5.2 Problem

Java 2 Platform, Enterprise Edition (J2EE) applications implement server-side business components as session beans and entity beans. Some methods exposed by the business components return data to the client. Often, the client invokes a business object's get methods multiple times until it obtains all the attribute values.

Session beans represent the business services and are not shared between users. A session bean provides coarse-grained service methods when implemented per the Session Facade pattern.

Entity beans, on the other hand, are multi-user, transactional objects representing persistent data. An entity bean exposes the values of attributes by providing an accessor method (also referred to as a getter or get method) for each attribute it wishes to expose.

Every method call made to the business service object, be it an entity bean or a session bean, is potentially remote. Thus, in an Enterprise JavaBeans (EJB) application such remote invocations use the network layer regardless of the proximity of the client to the bean, creating a network overhead. Enterprise bean method calls may permeate the network layers of the system even if the client and the EJB container holding the entity bean are both running in the same JVM, OS, or physical machine. Some vendors may implement mechanisms to reduce this overhead by using a more direct access approach and bypassing the network.

As the usage of these remote methods increases, application performance can significantly degrade. Therefore, using multiple calls to get methods that return single attribute values is inefficient for obtaining data values from an enterprise bean.

7.5.3 Solution

Use a Transfer Object to encapsulate the business data. A single method call is used to send and retrieve the Transfer Object. When the client requests the enterprise bean for the business data, the enterprise bean can construct the Transfer Object, populate it with its attribute values, and pass it by value to the client.

Clients usually require more than one value from an enterprise bean. To reduce the number of remote calls and to avoid the associated overhead, it is best to use Transfer Objects to transport the data from the enterprise bean to its client.

When an enterprise bean uses a Transfer Object, the client makes a single remote method invocation to the enterprise bean to request the Transfer Object instead of numerous remote method calls to get individual attribute values. The enterprise bean then constructs a new Transfer Object instance, copies values into the object and returns it to the client. The client receives the Transfer Object and can then invoke accessor (or getter) methods on the Transfer Object to get the individual attribute values from the Transfer Object. Or, the implementation of the Transfer Object may be such that it makes all attributes public. Because the Transfer Object is passed by value to the client, all calls to the Transfer Object instance are local calls instead of remote method invocations.

7.5.4 Implementation

7.5.4.1 Updatable Transfer Objects Strategy
In this strategy, the Transfer Object not only carries the values from the BusinessObject to the client, but also can carry the changes required by the client back to the business object.

The BusinessObject creates the Transfer Object. Recall that a client may need to access the BusinessObject values not only to read them but to modify these values. For the client to be able to modify the BusinessObject attribute values, the BusinessObject must provide mutator methods. Mutator methods are also referred to as setters or set methods.

Instead of providing fine-grained set methods for each attribute, which results in network overhead, the BusinessObject can expose a coarse-grained setData() method that accepts a Transfer Object as an argument. The Transfer Object passed to this method holds the updated values from the client. Since the Transfer Object has to be mutable, the Transfer Object class has to provide set methods for each attribute that can be modified by the client. Once the client obtains a Transfer Object from the BusinessObject, the client invokes the necessary set methods locally to change the attribute values. Such local changes do not impact the BusinessObject until the setData() method is invoked.

The setData() method serializes the client's copy of the Transfer Object and sends it to the BusinessObject. The BusinessObject receives the modified Transfer Object from the client and merges the changes into its own attributes. The merging operation may complicate the design of the BusinessObject and the Transfer Object. One strategy to use here is to update only attributes that have changed, rather than updating all attributes. A change flag placed in the Transfer Object can be used to determine the attributes to update, rather than doing a direct comparison.

There is an impact on the design using the updatable Transfer Objects in terms of update propagation, synchronization, and version control.

7.5.4.2 Multiple Transfer Objects Strategy
Some application business objects can be very complex. In such cases, it is possible that a single business object produces different Transfer Objects, depending on the client request. There exists a one-to-many relationship between the business object and the many Transfer Objects it can produce. In these circumstances, this strategy may be considered.

For instance, when the business object is implemented as a session bean, typically applying the Session Facade pattern, the bean may interact with numerous other business components to provide the service. The session bean produces its Transfer Object from different sources. Similarly, when the BusinessObject is implemented as a coarse-grained entity bean, typically applying the Composite Entity pattern, the entity bean will have complex relationships with a number of dependent objects. In both these cases, it is good practice to provide mechanisms to produce Transfer Objects that actually represent parts of the underlying coarse-grained components.

For example, in a trading application, a Composite Entity that represents a customer portfolio can be a very coarse-grained complex component that can produce Transfer Objects that provide data for parts of the portfolio, like customer information, lists of stocks held, and so on. A similar example is a customer manager session bean that provides services by interacting with a number of other BusinessObjects and components to provide its service. The customer manager bean can produce discrete small Transfer Objects, like customer address, contact list, and so on, to represent parts of its model.

For both these scenarios, it is possible to adopt and apply the Multiple Transfer Objects Strategy so that the business component, whether a session bean or an entity bean, can create multiple types of Transfer Objects. In this strategy, the business entity provides various methods to get different Transfer Objects. Each such method creates and returns a different type of Transfer Object.

7.6 Data Access Object

A data access object is used to encapsulate access to the database. A data access object should be implemented as an abstract class. This will make the object independent of the persistent data storage system. This will minimize any code changes necessary to support the implemented database.

7.6.1 Context

Access to data varies depending on the source of the data. Access to persistent storage, such as to a database, varies greatly depending on the type of storage (relational databases, object-oriented databases, flat files, and so forth) and the vendor implementation.

7.6.2 Problem

Many real-world Java 2 Platform, Enterprise Edition (J2EE) applications need to use persistent data at some point. For many applications, persistent storage is implemented with different mechanisms, and there are marked differences in the APIs used to access these different persistent storage mechanisms. Other applications may need to access data that resides on separate systems. For example, the data may reside in mainframe systems, Lightweight Directory Access Protocol (LDAP) repositories, and so forth. Another example is where data is provided by services through external systems such as business-to-business (B2B) integration systems, credit card bureau service, and so forth.

Applications can use the JDBC API to access data residing in a relational database management system (RDBMS). The JDBC API enables standard access and manipulation of data in persistent storage, such as a relational database. The JDBC API enables J2EE applications to use SQL statements, which are the standard means for accessing RDBMS tables. However, even within an RDBMS environment, the actual syntax and format of the SQL statements may vary depending on the particular database product.

There is even greater variation with different types of persistent storage. Access mechanisms, supported APIs, and features vary between different types of persistent stores such as RDBMS, object-oriented databases, flat files, and so forth. Applications that need to access data from a legacy or disparate system (such as a mainframe, or B2B service) are often required to use APIs that may be proprietary. Such disparate data sources offer challenges to the application and can potentially create a direct dependency between application code and data access code. When business components-entity beans, session beans, and even presentation components like servlets and helper objects for JavaServer Pages (JSP) pages --need to access a data source, they can use the appropriate API to achieve connectivity and manipulate the data source. But including the connectivity and data access code within these components introduces a tight coupling between the components and the data source implementation. Such code dependencies in components make it difficult and tedious to migrate the application from one type of data source to another. When the data source changes, the components need to be changed to handle the new type of data source.
7.6.3 Solution

Use a Data Access Object (DAO) to abstract and encapsulate all access to the data source. The DAO manages the connection with the data source to obtain and store data.

The DAO implements the access mechanism required to work with the data source. The data source could be a persistent store like an RDBMS, an external service like a B2B exchange, a repository like an LDAP database, or a business service accessed via CORBA Internet Inter-ORB Protocol (IIOP) or low-level sockets. The business component that relies on the DAO uses the simpler interface exposed by the DAO for its clients. The DAO completely hides the data source implementation details from its clients. Because the interface exposed by the DAO to clients does not change when the underlying data source implementation changes, this pattern allows the DAO to adapt to different storage schemes without affecting its clients or business components. Essentially, the DAO acts as an adapter between the component and the data source.

7.6.4 Implementation

7.6.4.1 DAO Abstract Class
The DAO abstract class contains data access methods common to all DAOs extending the abstract class. These methods include:
· Acquisition of a datasource

· Connection handling

· Resource close methods

The methods listed above are wrapped in their respective try-catch blocks so that the implementing classes can access the methods directly in their “finally“ block.

A single “closeAll()” method can be written to accept a ResultSet object, a Statement object, and a Connection object and perform the close on all three components.

7.6.4.2 DAO Implementation Class

The DAO implementation class (the concrete class) extends the DAO abstract class making all methods in the abstract class available to the implementing class. The DAO implementation class only performs operations relative to the underlying data store. All data validation must occur prior to calling the DAO.
The implementation DAO may receive necessary arguments in a parameter list, or it may receive the arguments encapsulated in a transfer object. One benefit to using a transfer object is that when the parameters change, the signature of the method can remain the same, with the change occurring within the transfer object.

Each data access method must throw at least two exceptions:

1. An exception specific to the data store type (i.e., if the data store is an RDBMS, an SQLException is thrown, if the data store is a file, an IOException is thrown).

2. The java.lang.Exception exception, to catch exceptions not specific to the data store

Values returned from a DAO may include:

1. A transfer object

2. A collection

a. java.util.Collection

b. java.util.Map

c. java.util.List

3. Any of the java primitives supported by the underlying data store
7.7 Pattern Implementation with MVC

[image: image1.emf]index.jsp

FrontController

.java

Other

Functions

(Print, Help,

FAQs, etc)

The FrontController reads the event request parameter

to determine which handler to call. This module is called

only when the URL starts with a mapping url-pattern.

Web.XML has been configured to call the controller based

upon the URL:

<servlet-mapping>

 <servlet-name>xxxWebController</>

 <url-pattern>/xxx</>

</servlet-mapping>

These modules are called “instantly” (i.e. they don’t

go thru the Controller) if the URL is not prefaced

with a url-pattern used in the servlet mapping tag of

the web descriptor. Usually, these functions open in

a new window, to not interfere with the main

purpose of the application.

xxxHandler

.java

The Handler is specific to a particular function, such as

Survey Type, Registration, etc. It utilizes the action (and

optionally a function) reques parameter to determine

which action to perform against the data. Its function is to

utilize the HTTP Request and HTTP Response objects,

and to create/destroy session variables as needed. Once

it retrieves data from a web page, it calls the Delegate to

perform the action requested.

After control is returned from the delegate, the Handler

determines which page to display next, and uses the

RequestDispatcher to call/display the JSP:

requestDispatcher =

httpReq.getRequestDispatcher

PageConstants.INDEX + "?content=" +

Constants.pageToDisplay);

xxxDelegate

.java

The Delegate is responsible for processing a logical

business transaction such as Registration, processing

an application, etc. Its function is to encapsulate all

classes that make up a logical business transaction.

Participants include, TOs, DAOs, Helper and Business

classes. The Delegate also catches any exceptions

thrown by lower level classes and translates the

exception into a user friendly error message.

xxxHelper

.java

xxxBusiness

.java

xxxDAODB2Impl

.java

A Business class implements business specific

logic such as server-side validations, credit card

processing, license verification, etc. A Business

class should implement a single business

function, which, when called by a Delegate

class, can be included in a logical business

transaction.

The Helper is used to

populate

PreparedStatements,

especially if they are long,

or complex.

The DAO (Data Access Object) handles all

database access, and determines what to do

with the data once it’s retrieved. Uses

PreparedStatements extensively. Can throw

errors. (The DAO implements xxxDAO.java.)

Updates the TO with DB info.

View

Controller

Model

xxx.jsp

content=’xxx.jsp’

index.jsp is always used to display content to the

user. This allows for a common banner/heading and

NavBar without having to include it in several pages.

The parameter

content=’xxx.jsp’

controls what is displayed in the body of the page

xxxTO.java

The TO (Transfer Object)

encapsulates business data using

private instance variables and uses

public getters/settters to access the

data.

8. Client Tier Design Guidelines

8.1 Protocols

HTTP/HTTPS.

8.2 Content Format

The content served over the HTTP protocol will be formatted in HTML. HTML will account for a majority of the client-side content. Actual generation of HTML will be constructed by the web tier components (see section 9. Web Tier Design Guidelines). JavaScript code will be used to perform client-side validation.

DHTML should not be used since not all browsers handle it consistently. Using DHTML would likely increase the chances of having to design different versions of each page or to include browser-specific markup in each of the pages.

The use of Cascading Style Sheets (CSS) offer flexibility in terms of the presentation effects they provide. A single change to a style sheet tag is propagated to all HTML elements which implement the style sheet tag. The current CDI standard for Cascading Style Sheets is the JEL Standard base.css style sheet found in the UITemplate project (CVS).
As stated earlier in the document, the Composite View pattern is used when creating the User Interface. The Composite View pattern helps to create a consistent look and feel across the CDI web site.

The combination of HTTP and HTML, with the exclusion of DHTML, will ensure that a document can be consistently viewed on current and future upgrades of CDI-IT supported browsers.

8.3 Data Retrieval

Retrieve all data required to support an HTTP request in a single call to the data tier. For example, if the user is accessing the COIN data, and needs insurer and investment data, retrieve all insurer and investment data needed to satisfy the request without making multiple call, from the web tier, to the data tier.
8.4 Data Caching

Data that is common from web page to web page should be cached on the application server.

8.5 Data Validation

Data validation is accomplished by performing two separate validation processes. The first validation process is directed at maintaining data integrity by performing data type validation. The second validation process is directed at maintaining data integrity by performing business rules validation.
8.5.1 Data Type Validation

Data type validation is the process of ensuring that the correct data types are entered in all text box entries. Data type validation occurs whenever the Save, Next, or Back buttons are pressed. Data type validation checks for the following:
1. Numeric fields contain numeric data only
2. Date fields contain valid dates

3. “Block” data is complete (all address information is complete, all phone information is complete, etc.)

4. Correct data lengths are entered

8.5.2 Business Rule Validation

Business rule validation is the process of ensuring that all business rules have been met when data is persisted. Business rule validation occurs on the server, whereas data type validation occurs on the client.
Enforcement of business rules often require additional data which may or may not be available on the client. Performing business rule validation on the server enables the validation process to retrieve the additional data more conveniently, and more importantly, allows business rules to be enforced even when JavaScript is disabled on the client.
Business rule validation is the responsibility of a business delegate class, either directly, or through use of a helper/validator class working on behalf of the business delegate.

8.6 Data Downloading

Data download requests will be downloaded in Comma Separated Value (csv) format. This will allow the downloaded file to be imported by most of the desktop applications supported by CDI-IT.

9. Web Tier Design Guidelines

9.1 Dynamic Content Creation

JavaServer Pages (JSP) technology will be used to create the dynamic content of this application. The main goal of using JSP pages is to separate content from the application/business logic. JavaBeans components and custom tag extensions should be used in conjunction with the JSP pages to help achieve this goal and to provide additional code reusability.

9.2 Web Tier Components

JSP Pages

Although JSP pages can contain both presentation logic and content, a strong effort should be made to ensure that the JSP pages only contain code related to the display of model data. Custom tags or JavaBeans components will handle repetitive HTML rendering, such as banners and navigation bars. Miscellaneous tasks should be handled by custom tags or by helper classes.

The front controller will manage all other application web components and will handle all HTTP requests. The JSP pages will take all HTTP requests from the front controller and use the necessary JavaBeans components to render a page.

The front controller provides a single entry point, ensuring that this application will be properly initialized to handle a user’s request. The controller also provides a way to prevent deep linking to information within the site.

JavaBeans Components

JavaBeans components should primarily be used as data-centric model objects. The beans should be created specifically to manipulate and return data so they can be used by multiple views. When an update event is received, JavaBeans components will contact the EJBs they mirror, refresh the data contained by the EJBs, and assist the JSP page in rendering the updated data into HTML.

Page-specific JavaBeans components can also be used to provide the logic necessary for processing data and to generate a result for a particular page.

Custom Tags

Custom tags should be used in a JSP page to iterate through data and generate the HTML code needed to render a page. A custom tag should be used to take the data contained within a data JavaBeans component and generate the HTML to render the corresponding page.

In addition to generating HTML, custom tags should be used to process data. This should reduce the amount of Java language code needed within the application and make portions of the application configurable by a page designer. Portions of a page that require logic, such as looping or state display, are also good places to use custom tags.

Scriptlets

In some cases it may be necessary to use small blocks of Java code, or “scriptlets”, to generate content. Using this practice is highly discouraged and should be reviewed with the Application Architect before doing so. JavaBeans components and custom tags should provide the means of adding necessary functionality while avoiding the use of scriptlets.

10. Enterprise JavaBeans (EJB) Tier Guidelines

Although Enterprise JavaBeans are not currently implemented in any of the CDI applications, the following section provides guidelines in the event that an application determines that the use of EJBs is necessary.
10.1 Stateless Session Beans

The following guidelines should be used when deciding whether to model a business object as a stateless session bean:

· Modeling reusable service objects

A business object that provides some generic service to all its clients can be modeled as stateless session beans. For example, it would be appropriate to model a business object that validates a Trading Partner ID against a database as a stateless service.

· Providing high performance

A stateless session bean can be very efficient, as it requires fewer system resources by the virtue of not being tied to one client. Stateless session beans minimize the resources needed to support a large number of clients and can scale better than stateful session beans. However, this benefit may be offset by the increased complexity of the client application that uses the stateless session beans because the client has to perform the state management functions. This decision should be looked at closely to determine offset benefit.

· Operating on multiple rows at a time

A business object that manipulates multiple rows in a database and represents a shared view of the data is an ideal stateless session bean. An example of such a business object would be a report object that presents a list of various profiles and categories. Since all users would be interested in such information, the stateless session bean that represents it could easily be shared.

· Providing procedural views of data

In a procedural view of data, methods of the business object do not operate on instance variables. Instead they behave like calls in a procedural language. The method caller provides all the input and the method returns all output to the caller. If a business object exhibits such functionality then it should be modeled as a stateless session bean.

An enterprise bean should only use the services defined by the EJB specification, allowing the enterprise bean to be deployed in any compliant EJB container.

Service information, including transaction and security information, should be separate from the enterprise bean implementation. This will allow the service information to be customized during application assembly and deployment. This will make it possible to include an enterprise bean in an assembled application without having to make code changes or recompiling the application components.

10.2 Entity Beans

The following guidelines should be used when deciding whether to model a business object as an entity bean:

· Representing persistent data

If the state of a business object needs to be stored in persistent storage and its behavior primarily represents manipulation of the data represented in this state, then it should be modeled as an entity bean. Since every method call to an entity object is potentially a remote call, an entity bean should be a logical representation of the business object it models.

To avoid expensive remote methods to retrieve the value of a business object’s fields, a value object to represent the object details is used. Only one remote call is required to retrieve the value object and then a client's request to query the state of a retrieved object can then be satisfied with local “get” methods on the details of the object. Similarly, to avoid fine-grained “set” methods use a coarse-grained method to update all object information with one remote call. Value objects are discussed at the end of this section.

· Providing concurrent access by multiple clients

When the state and behavior of a business object needs to be shared among multiple clients, they should be modeled as entity beans. This kind of business object needs to maintain state between method calls. By modeling such business objects as entity beans, a Bean Provider can rely on an EJB server to ensure appropriate synchronization for entity beans as they are accessed concurrently from multiple transactions.

· Representing a single logical record of data

The business objects that operate on one logical record in the database are candidates to model as entity beans.

Potential uses of entity beans would include:

· A user account or trading partner bean. Multiple clients need to share behavior such as creating an account, verifying an existing account, and updating account information. Updates to the state of an account object need to be written to persistent storage and an account object lives even when the client's session with the server is over.

Entity Bean Persistence

Bean-managed persistence should be used when implementing persistence. The data access calls should be encapsulated in a data access component that is part of the entity bean. Encapsulating data access calls in a data access object makes it easier to adapt the enterprise bean's data access to different schemas or different database types.

The decision to use bean-managed persistence over container-managed persistence is based on the following:

· Sophisticated tools must be used at deployment time to map the enterprise bean's fields to a data source. These tools and containers are typically specific to a data source.

· Some containers may not be capable of handling complex state objects, for example, objects representing multiple joins. It is highly likely that multiple table joins will occur in this application.

· Most EJB containers, including OAS, require adherence to specific naming conventions for the datastores that persist EJB data.

10.3 Stateful Session Beans

The following guidelines should be used when deciding whether to model a business object as a stateful session bean:

· Maintaining client-specific state

Stateful session beans are designed to maintain a conversational state on behalf of a client, therefore business objects representing client-centric business logic should be modeled as stateful session beans. Since stateful session bean instances are tied to a client, system resources held by stateful session beans cannot be shared among multiple clients.

· Representing non-persistent objects

Stateful session bean state is not stored in the persistent storage and cannot be recreated after the client's session with the server is over. Therefore, business objects that are relatively short-lived and non-persistent should be modeled as stateful session beans. In other words, a business object that does not need to live after a client's session with the server is over, or be present when the server comes back after a crash, should be modeled as a session bean.

· Representing work flow between business objects

The business objects that manage the interaction of other business objects in a system are excellent candidates to be modeled as stateful session beans. Such objects usually exhibit both of the above characteristics, since they are client specific and represent data-neutral non-persistent behavior.

Potential uses of stateful session beans would include:

· a collection of data entry forms for capturing data

· a controller that manages the interaction of various objects in a work flow on behalf of a client

10.4 Message Driven Beans

11. Database Guidelines

11.1 Triggers

Consider using triggers when:

1) Audit requirements exist

2) History requirements exist
BEFORE VS AFTER TRIGGER

Never use BEFORE triggers for validation. Use BEFORE triggers only to modify :NEW value.

AFTER row triggers are slightly more efficient than BEFORE row triggers. With BEFORE row triggers, affected data blocks must be read (logical read, not physical read) once for the trigger and then again for the triggering statement. Alternatively, with AFTER row triggers, the data blocks must be read only once for both the triggering statement and the trigger.

11.2 Stored Procedures

Consider using a stored procedure when:

1) Querying multiple tables which are not involved in a join operation

2) Updating multiple tables
Five guidelines for PL/SQL best practices:
1) While writing pl/sql, use the correct datatype so that implicit conversion will be avoided
2) Use bind variable to avoid unnecessary parsing
3) Use BULK COLLECT, % ATTRIBUTES wherever required
4) MODULARITY

Write the code that fit into your screen size.
Through successive refinement, you can reduce a complex problem to a
set of simple problems that have easy-to-implement solutions.

5) EXCEPTION WHEN OTHERS is almost always a BUG unless it is immediately
followed by a RAISE. Use WHEN OTHERS exception as the last resort and handle exceptions. For example:

EXCEPTION
WHEN OTHERS THEN
if (sqlcode=-54) then
.... deal with it.
else
RAISE;
end if;
[image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33][image: image34][image: image35][image: image36][image: image37][image: image38][image: image39][image: image40][image: image41][image: image42][image: image43][image: image44][image: image45][image: image46][image: image47][image: image48][image: image49][image: image50][image: image51][image: image52]
Prepared for:

California Department of Insurance

300 Capital Mall, Suite 1400

Sacramento, CA 95814

Final

April 2006

Prepared By:

�

Natoma Technologies, Inc.

8801 Folsom Blvd., Suite 107

Sacramento CA 95826

CDI J2EE Design Guidelines

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

_1216656049.vsd
index.jsp

FrontController
.java

Other Functions
(Print, Help, FAQs, etc)

The FrontController reads the event request parameter to determine which handler to call. This module is called only when the URL starts with a mapping url-pattern. Web.XML has been configured to call the controller based upon the URL:
<servlet-mapping>
 <servlet-name>xxxWebController</>
 <url-pattern>/xxx</>
</servlet-mapping>

These modules are called “instantly” (i.e. they don’t go thru the Controller) if the URL is not prefaced with a url-pattern used in the servlet mapping tag of the web descriptor. Usually, these functions open in a new window, to not interfere with the main purpose of the application.

xxxHandler
.java

The Handler is specific to a particular function, such as Survey Type, Registration, etc. It utilizes the action (and optionally a function) reques parameter to determine which action to perform against the data. Its function is to utilize the HTTP Request and HTTP Response objects, and to create/destroy session variables as needed. Once it retrieves data from a web page, it calls the Delegate to perform the action requested.

After control is returned from the delegate, the Handler determines which page to display next, and uses the RequestDispatcher to call/display the JSP:
requestDispatcher = httpReq.getRequestDispatcher
PageConstants.INDEX + "?content=" + Constants.pageToDisplay);

xxxDelegate
.java

The Delegate is responsible for processing a logical business transaction such as Registration, processing an application, etc. Its function is to encapsulate all classes that make up a logical business transaction. Participants include, TOs, DAOs, Helper and Business classes. The Delegate also catches any exceptions thrown by lower level classes and translates the exception into a user friendly error message.

xxxHelper
.java

xxxBusiness
.java

xxxDAODB2Impl
.java

A Business class implements business specific logic such as server-side validations, credit card processing, license verification, etc. A Business class should implement a single business function, which, when called by a Delegate class, can be included in a logical business transaction.

The Helper is used to populate PreparedStatements, especially if they are long, or complex.

The DAO (Data Access Object) handles all database access, and determines what to do with the data once it’s retrieved. Uses PreparedStatements extensively. Can throw errors. (The DAO implements xxxDAO.java.) Updates the TO with DB info.

View

Controller

Model

xxx.jsp

content=’xxx.jsp’

index.jsp is always used to display content to the user. This allows for a common banner/heading and NavBar without having to include it in several pages. The parameter
content=’xxx.jsp’
controls what is displayed in the body of the page

xxxTO.java

The TO (Transfer Object) encapsulates business data using private instance variables and uses public getters/settters to access the data.

_1230959081.vsd
Bean Name

Oracle Application Server

Oracle 10g

Web Tier

Data Access Object

EJB Tier

EJBs

HTML, HTTP/S, XML

JDBC

HTML,
JavaScript

Web Browser

Server 1

Server 2

Delegate

Oracle HTTP Server

HTTP Daemon

Front Controller
(Servlet)

Presentation Components
(JSP Pages, JavaBeans)

RequestHandler

HTTPServletRequest

Transfer Object

Transfer Object

Transfer Object

RequestDispatcher

_1214373743.vsd
Client

1: send request

1.1: delegate request

Helper

RequestHandler

Controller

View

2: send request

2.1: delegate request

2.1.1.1: return results

1.1.1: forward request

2.1.1: process request

2.1.2: forward request

_1214644022.vsd
Client

1: request service

1.1: invoke service

1.1.2: return response

1.2: getData

1.2.1: return data

1.1.2: return response

BusinessService

BusinessDelegate

DataAccessObject

