
[image: image1.jpg]latoma

IECHNOLOGIES, INC.

[image: image2.jpg]

Revision Chart

Please provide a description of the change as it relates to the new release of the document. Attach any identifying release notes and functionality descriptions relevant to the new issue and document serial number.

Naming scheme for the document serial number follows the first two initials of the document purpose (e.g. SRS, two-digit month, four-digit year, v, and a two-digit version number).

	Version Number
	Primary Author(s)
	Description of Version
	Date Completed

	1.0
	Natoma Technologies, Inc.
	Initial Version
	11/2005

	1.1
	Natoma Technologies, Inc.
	Draft Submittal
	12/2006

	2.0
	Natoma Technologies, Inc.
	Final
	4/2006

	2.2
	Christie Borchin
	Modified references
	8/8/2006

Table of Contents

41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
References
4
2.
Code Conventions
4
2.1
Java
4
2.1.1
File Organization
4
2.1.2
Code Organization and Style
5
2.1.3
White Space
6
2.1.4
Comments
7
2.1.5
General Naming Conventions
8
2.1.6
Specific Naming Conventions
8
2.1.7
Declarations
10
2.1.8
Statements
13
2.2
JavaServer Pages
14
2.2.1
File Names and Locations
14
2.2.2
Code Organization
15
2.2.3
White Space
18
2.2.4
Comments
19
2.2.5
Naming Conventions
21
2.2.6
HTML and JSP Code
22
2.2.7
JSP Declarations
24
2.2.8
JSP Scriptlets
25
2.2.9
JSP Expressions
27
2.2.10
JSP Pages in XML Syntax
28
2.2.11
Programming Practices
29
2.3
HTML
33
2.3.1
Naming Conventions
33
2.3.2
Code Organization and Style
33
2.4
JavaScript
33
2.4.1
Naming Conventions
33
2.4.2
Code Organization and Style
33
3.
Javadoc
34
3.1
Organization and Style
34
3.2
Format
35
3.2.1
Descriptions
35
3.2.2
The @param Tag
36
3.2.3
The @return Tag
36
3.2.4
The @throws Tag
37
3.2.5
The @since Tag
37
3.2.6
The @deprecated Tag
38
4.
Exception Handling
39
4.1
Unchecked Exceptions
39
4.2
Checked Exceptions
39
5.
Logging
41

1. Introduction

1.1 Purpose

This document lists coding standards and guideline common in the Java and web development community. These guidelines and standards are based on established standards collected from a number of sources, individual experience, and local requirements and needs.
The guidelines and standards in this document cover the Java technology, as well as other web language technologies such as JavaScript and HTML. Basic guidelines for exception handling, logging, and the use of javadoc are also discussed in this document.

1.2 Scope

The scope of this document is intended to set a baseline standard for all Java development at CDI.

1.3 References

· CDI Systems Development Methodology v1.0

· ADAM Development Standards

· Project Management Methodology

· CDI J2EE Design Guidelines

· Public Website Style Guide v2.2

· CDI Application Style Guide v1.2

2. Code Conventions

This section describes coding conventions to follow when programming in the associated language.

2.1 Java

2.1.1 File Organization

1. Java source files must have the extension .java

2. Classes and Interfaces must be declared in individual files with the file name matching the class name

3. When private classes and interfaces are associated with a public class, you can put them in the same source file as the public class by making them an inner class
4. Files longer than 2000 lines must be avoided or broken down into helper files

5. File content must be kept within 80 characters per line

6. Special characters like TAB and page-breaks must be avoided

7. The incompleteness of split lines must be indented as to make it obvious

2.1.2 Code Organization and Style

8. Content must be organized in the following order:

· Beginning comments, which include the change log

/*

 * Copyright notice

 *

 * Change Log

 * M. Smith 2005/10/20

 * Changed signature of methodA()

 *

*/

· package and import statements

· Class/interface javadoc comment

/**

 * Classname

 *

 * Author: S. Jones

 *

 * Version: 1.12

*/

· Class/interface declaration

The following table describes the parts of a class or interface declaration, in the order that they must appear.

	Order
	Part of Class/Interface Declaration
	Notes

	1.
	Class/interface javadoc comment

/** … */
	See javadoc guidelines in section

	2.
	Class or Interface declaration
	

	3.
	Class (static) variables
	First public, then protected, then private

	4.
	Instance variables
	First public, then protected, then private

	5.
	Constructors
	

	6.
	Methods
	Methods must be grouped by functionality rather than by scope or accessibility.

9. Basic indentation must be 4 spaces

10. Line length must be kept to 80 characters and use the following guidelines for line wrapping

· Break after a comma

· Break before an operator

· Align the new line with the beginning of the expression at the same level on the previous line

myMethod(ObjectArg1 vArgument1, ObjectArg2 vArgument2,

 ObjectArgument3 vArgument3) {

 …

}

myMethod1(ObjectArg1 vArgument1, ObjectArg2 vArgument2,

 myMethod2(ObjectArgument1 vArgument1,

 ObjectArgument2 vArgument2) {

 …

}

· If the above guidelines lead to confusing code or to code that’s indented up against the right margin, then use an eight space indent instead

11. Block layout for Class, Interface and method blocks must be as illustrated

Declaration {

 statement;

}

12. The Class or Interface declarations must have the following form

class MyClass extends AnotherClass

 implements SomeInterface, another Interface {

 …

}

13. The method declaration must have the following form

public void someMethod() throws SomeException {

 …

}

2.1.3 White Space

14. Conventional operators must be surrounded by a space character

amount = price + tax;

15. Java reserved words must be followed by a white space

if (isValid)

16. Commas must be followed by a white space

processRequest(request, response);
17. Colons must be surrounded by white space

if (isValid) ? updateRecord() : displayMessage;

18. Semicolons in for statements must be followed by a space character

for (int i = 0; i < row.length; i++)

19. Function names must not be followed by a white space when it is followed by another name

amount = calculateAmount(inventory.getItemPrice(item));

20. Logical units within a block must be separated by one blank line

PriceList prices = new PriceList();
double itemCost = inventory.getItemPrice(item);
double itemTax = inventory.getItemTax(item);
prices.setSellPrice(itemCost, itemTax);

21. Methods must be separated by 2-3 blank lines

22. Statements must be aligned wherever this enhances readability

value = (potential * oilDensity) / constant1 +

 (depth * waterDensity) / constant2 +

 (zCoordinateValue * gasDensity) / constant3;

2.1.4 Comments

There are two syntax types for commenting code, the single line (//) syntax and the block (/* … */) syntax.

23. Block comments are required for providing descriptions on all classes, interfaces, and methods

/*

 * This class is the data access object for all bulletin

 * database I/O operations. All bulletin database activity

 * occurs within this class

*/

24. Block comments must be preceded by a blank line to set it apart from the rest of the code

public double getCost() {

 return cost;

}

/*

 * Item price is calculated using the inventory cost

 * multiplied by the purchasing state’s tax percentage.

*/

 price = inventory.getCost(item) * getStateTax(state);

25. Single or block comments can be used for commenting code other than the description

// return 0 if item is not available

 OR

/*

 * return 0 if item is not available

*/

26. Comments must be indented relative to their position in the code

if (isUniqueItem) {

 //unique items have a special handling markup

 price = price + getUniqueItemMarkup(item);

}

27. Single line comments can appear on the same line as the code they describe, but must be indented far enough to separate them form the statements

if (isUniqueItem) // apply additional markup

28. The declaration of collection variables must be followed by a comment stating the common type of the elements of the collection

private Set items; // of InventoryItem

private ArrayList states; // of State

29. All public classes and public and protected functions within public classes must be documented using the Java documentation (javadoc) conventions

/**

 * This class does the following …

*/

class ParentClass {

 ...

 /**

 * This class only has relevance in context of the parent

 * class

 */

 class InnerClass {

30. Tricky code must not be commented but rewritten!

2.1.5 General Naming Conventions

31. Names representing packages must be in all lower case

gov.ca.insurance.XXXX.utils

gov.ca.insurance.XXXX.exceptions

32. Names representing types must be nouns and written in mixed case starting with upper case

Line, FilePrefix

33. Variable names must be in mixed case starting with lower case

line, filePrefix

34. Names representing constants (final variables) must be all uppercase using underscore to separate words

MAX_ITERATIONS, COLOR_RED

35. Names representing methods must be verbs and written in mixed case starting with lower case

getName(), calculateTotalCost()

36. Acronyms must not be uppercase when used as name

ExportHtmlSource(), getEmployeeSsn()

37. All names must be written in English

38. Generic variables must have the same name as their type

void setTopic(Topic topic),

void connect(Database database)

39. The name of the object is implicit, and must be avoided in a method name

line.getLength() vs. line.getLineLength()

2.1.6 Specific Naming Conventions

40. The package name must use the following convention:

· The first node of a unique package name is always written in all-lowercase letters and must use the top-level domain name gov
· The second node of the package name must use the state abbreviation ca
· The third node of the package name must use the state agency acronym insurance
· The fourth node of the package name must use the project name, or project name acronym (e.g. coin)

· The fifth node of the package name must identify the functional group of the classes contained within

41. The terms get and set must be used where an attribute is accessed directly

employee.getName(), employee.setName(employeeName)

42. An is prefix must be used for boolean variables and methods

isVisible, isOpen

43. The term compute can be used in methods were something is computed

valueSet.computeAverage();

matrix.computeInverse();

44. The term find can be used in methods were something is looked up

matrix.findMinElement();

45. The term initialize can be used where an object or concept is established

printer.initializeFontSet();

46. JFC (Java Swing) variables must be suffixed by the element type

nameFieldText, leftScrollBar, mainPanel

47. Plural form must be used on names representing a collection of objects

Collection addresses;

int[] values;

48. A No suffix must be used for variables representing an entity number

employeeNo, indentificationNo

49. Iterator variables must be called i,j,k etc.

for (int i = 0; I < nTables; i++) {

 …

}

while(Iterator j = addresses.iterator(); j.hasNext();) {

 …

}

50. Complement names must be used for complement entities

getFirstName/setFirstName

createInventoryItem/destroyInventoryItem

minTaxPercent/maxTaxPercent

51. Abbreviations in names must be avoided

calculateAverage() v. calcAvg()

52. Negated boolean variable names must be avoided

isFound v. isNotFound, isValid v. isNotValid

53. Associated constants (final variables) must be prefixed by a common type name

final int COLOR_RED = 1;

final int COLOR_BLUE = 2;

54. Exception classes must be suffixed with Exception
class AccessException();

55. Default interface implementations can be prefixed by Default
class DefaultTableCellRenderer

implements TableCellRenderer

56. Functions (methods returning an object) must be named after what they return and procedures (void methods) after what they do

public double getItemPrice ()

public void updateItemPrice(item)

2.1.7 Declarations

2.1.7.1 Classes and Interfaces

57. Class and Interface declarations must be organized in the following manner:

1) Class/Interface documentation

2) class or interface statement

3) Class (static) variables in the order public, protected, package (no access modifier), private
4) Instance variables in the order public, protected, package (no access modifier), private
5) Constructors

6) Methods (no specific order)

/**

 * Classname

 *

 * Author: S. Jones

 *

 * Version: 1.12

*/

/**

 * Class description

*/

public class ItemList {

 public static final int MAXIMUM_ITEM_ORDER = 20;

 protected int itemCount;

 private itemNumber;

 /**

 * Default constructor

 */

 public ItemList () {

 }

 /**

 * Adds Item to the item list

 */

 public void addItem(Item item) {}

 /**

 * Returns the number of items on the item list

 */

 public int getItemCount() {...}

}

2.1.7.2 Methods

58. Method modifiers must be given in the following order:
<access> static abstract synchronized <unusual> final native
The <access> modifier (if present) must be the first modifier

public static toInt(String number) {

 return Integer.parseInt(number);

}

abstract char get() {}

public synchronized boolean put(Object content) {

 ...

}

public final int getId() {

 ...

}

2.1.7.3 Types

59. Type conversions must always be done explicitly. Never rely on implicit type conversion

floatValue = (int) intValue; //not floatValue = intValue;

2.1.7.4 Variables

60. Variables must be declared one per line

61. Variables must be declared one per line and must be declared at the beginning of a block

62. Variables must be initialized where they are declared and they must be declared in the smallest scope possible

if (isPriceDiscounted) {

 double discountPrice = 0.0;

 double discount = getDiscountPrice(item);

 return discountPrice = item.getPrice() – discount;

}

 NOT

double discountPrice = 0.0;

double discount = 0.0;

if (isPriceDiscounted) {

 discount = getDiscountPrice(item);

 return discountPrice = item.getPrice() – discount;

}

63. Variables must never have dual meaning

64. Class variables must never be declared public

65. Variables must be kept alive as short a time as possible

66. Arrays must be declared with their brackets next to the type, not the variable
String[] itemList; // not String itemList[]

67. All hard-coded variables must be declared as a constants using static final
2.1.7.5 Loops

68. Only loop control statements must be included in the for() construction

69. Loop variable must be initialized immediately before the loop

70. The use of do… and while loops must be avoided

71. The use of break and continue in loops must be avoided

2.1.7.6 Conditionals

72. Complex conditional expressions must be avoided. Use temporary Boolean variables instead.

boolean isFinished = (elementNo < 0) ||
 (elementNo > maxElement);
boolean isRepeatedEntry = elementNo == lastElement;
if (isFinished || isRepeatedEntry) { : }
NOT:

if ((elementNo < 0) || (elementNo > maxElement)||

 elementNo == lastElement) { : }
73. The nominal case must be put in the if part, and the exception in the else-part of an if statement

74. The conditional must be put on a separate line

75. Executable statements in conditionals must be avoided

2.1.7.7 Miscellaneous

76. The use of “magic” numbers in the code must be avoided. Numbers other that 0 and 1 can be considered declared as named constants

77. Floating point constants must always be written with a decimal point and at least one decimal
78. Floating point constants must always be written with a digit before the decimal point
79. Static variables or methods must always be referred to through the class name and never through an instance variable
2.1.8 Statements

2.1.8.1 Package and Import Statements

80. The package statement must be the first statement of the file. All files must belong to a specific package.

81. The import statements must follow the package statement

82. import statements must be sorted with the most fundamental packages first, and grouped with associated packages together and one blank line between groups.

83. If the number of classes being used in an import statement are four or less, the import statement must specify the class names being used

84. If the number of classes being used in an import statement are greater than four use an asterisk (*) on the import statement

2.1.8.2 Conditional Statements

85. The if, while, and for statements must have the following form

control-statement {

 statement;

}

86. The if-else class of statements must have the following form

if (condition) {

 statement;

} else {

 statement;

}

87. The for statement must have the following form

for (initialization; condition; update) {

 …

}

88. An empty for statement must have the following form

for (initialization; condition; update;)

;

89. The while statement must have the following form

while (condition) {

 Statements;

}

90. Single statement if-else, for or while statements must be written with brackets

control-statement(…) {

 statement;

}

91. A switch statement must have the following form

switch (condition) {

 case ABC:

 statements;

 case DEF:

 statements;

 break;

 default:

 statements;

}

92. A try-catch statement must have the following form

try {

 statements;

} catch(Exception e) {

 statements;

} finally {

 Statements;

}

2.2 JavaServer Pages

2.2.1 File Names and Locations

File naming gives tool vendors and web containers a way to determine file types and interpret them accordingly. The following table lists recommended file suffixes and locations.

	File Type
	File Suffix
	Recommended Location

	JSP technology
	.jsp
	<context root>/<subsystem path>/

	JSP fragment
	.jsp
	<context root>/<subsystem path>/

	
	.jspf
	<context root>/WEB-INF/jspf/<subsystem path>/

	cascading style sheet
	.css
	<context root>/css/

	JavaScript technology
	.js
	<context root>/js/

	HTML page
	.html
	<context root>/<subsystem path>/

	web resource
	.gif, .jpg, etc.
	<context root>/images/

	tag library descriptor
	.tld
	<context root>/WEB-INF/tld/

There are a few things to keep in mind when reading the table above. First, <context root> is the root of the context of the web application (the root directory inside a .war file). Second, <subsystem path> is used to provide a refined logical grouping of dynamic and static web page contents. For a small web application, this may be an empty string. Third, the term JSP fragment is used to refer to a JSP page that can be included in another JSP page. In the JSP 2.0 Specification, the term "JSP segment" is used instead, as the term "JSP fragment" is overloaded. JSP fragments can use either .jsp or .jspf as a suffix, and must be placed either in /WEB-INF/jspf or with the rest of the static content, respectively. JSP fragments that are not complete pages must always use the .jspf suffix and must always be placed in /WEB-INF/jspf. Fourth, though the JSP specification recommends both .jspf and .jsp as possible extensions for JSP fragments, use .jspf as .jsf might be used by the JavaServer Faces specification.

It is in general a good practice to place tag library descriptor files and any other non-public content under WEB-INF/ or a subdirectory underneath it. In this way, the content will be inaccessible and invisible to the clients as the web container will not serve any files underneath WEB-INF/.

An optional welcome file's name, as declared in the welcome-file element of the deployment descriptor (web.xml), must be index.jsp if dynamic content will be produced, or index.html if the welcome page is static.

2.2.2 Code Organization

A well-structured source code file is not only easier to read, but also makes it quicker to locate information within the file. This section introduces the structures for both JSP and tag library descriptor files.

2.2.2.1 JSP File / JSP Fragment File

A JSP file consists of the following sections in the order they are listed:

1. Opening comments

2. JSP page directive(s)

3. Optional tag library directive(s)

4. Optional JSP declaration(s)

5. HTML and JSP code

Opening Comments

A JSP file or fragment file begins with a server side style comment:

	<%--

 - Author(s):

 - Date:

 - Copyright Notice:

 - @(#)

 - Description:

 --%>

This comment is visible only on the server side because it is removed during JSP page translation. Within this comment are the author(s), the date, and the copyright notice of the revision, an identifier and a description about the JSP page for web developers. The combination of characters "@(#)" is recognized by certain programs as indicating the start of an identifier. While such programs are seldom used, the use of this string does no harm. In addition, this combination is sometimes appended by "Id" for the identification information to be automatically inserted into the JSP page by some version control programs. The Description part provides concise information about the purpose of the JSP page. It does not span more than one paragraph.

In some situations, the opening comments need to be retained during translation and propagated to the client side (visible to a browser) for authenticity and legal purposes. This can be achieved by splitting the comment block into two parts; first, the client-side style comment:

	<!--

 - Author(s):

 - Date:

 - Copyright Notice:

 -->

and then a shorter server side style comment:

<%--

 - @(#)

 - Description:

 --%>

JSP Page Directive(s)

A JSP page directive defines attributes associated with the JSP page at translation time. The JSP specification does not impose a constraint on how many JSP page directives can be defined in the same page. So the following two Code Samples are equivalent (except that the first example introduces two extra blank lines in the output):

Code Sample 1:

<%@ page session="false" %>

<%@ page import="java.util.*" %>

<%@ page errorPage="/common/errorPage.jsp" %>

If the length of any directive, such as a page directive, exceeds the normal width of a JSP page (80 characters), the directive is broken into multiple lines:

Code Sample 2:

<%@ page session="false"

 import="java.util.*"

 errorPage="/common/errorPage.jsp"

%>

In general, Code Sample 2 is the preferred choice for defining the page directive over Code Sample 1. An exception occurs when multiple Java packages need to be imported into the JSP pages, leading to a very long import attribute:

	<%@ page session="false"

 import="java.util.*,java.text.*,

 com.mycorp.myapp.taglib.*,

 com.mycorp.myapp.sql.*, ..."

...

%>

In this scenario, breaking up this page directive like the following is preferred:

	<%-- all attributes except import ones --%>

<%@ page

...

%>

<%-- import attributes start here --%>

<%@ page import="java.util.*" %>

<%@ page import="java.text.*" %>

...

Note that in general the import statements follow the local code conventions for Java technology. For instance, it may generally be accepted that when up to three classes from the same package are used, import must declare specific individual classes, rather than their package. Beyond four classes, it is up to a web developer to decide whether to list those classes individually or to use the ".*" notation. In the former case, it makes life easier to identify an external class, especially when you try to locate a buggy class or understand how the JSP page interacts with Java code. For instance, without the knowledge of the imported Java packages as shown below, a web developer will have to search through all these packages in order to locate a Customer class:

<%@ page import="com.mycorp.bank.savings.*" %>

<%@ page import="com.thirdpartycorp.cashmanagement.*" %>

<%@ page import="com.mycorp.bank.foreignexchange.*" %>

...

In the latter case, the written JSP page is neater but it is harder to locate classes. In general, if a JSP page has too many import directives, it is likely to contain too much Java code. A better choice would be to use more JSP tags (discussed later in this article).

Optional Tag Library Directive(s)

A tag library directive declares custom tag libraries used by the JSP page. A short directive is declared in a single line. Multiple tag library directives are stacked together in the same location within the JSP page's body:

<%@ taglib uri="URI1" prefix="tagPrefix1" %>

<%@ taglib uri="URI2" prefix="tagPrefix2" %>

...

Just as with the page directive, if the length of a tag library directive exceeds the normal width of a JSP page (80 characters), the directive is broken into multiple lines:

<%@ taglib

 uri="URI2"

 prefix="tagPrefix2"

%>

Only tag libraries that are being used in a page must be imported.

From the JSP 1.2 Specification, it is highly recommended that the JSP Standard Tag Library (JSTL) be used in your web application to help reduce the need for JSP scriptlets in your pages. Pages that use JSTL are, in general, easier to read and maintain.

Optional JSP Declaration(s)

JSP declarations declare methods and variables owned by a JSP page. These methods and variables are no different from declarations in the Java programming language, and therefore the relevant code conventions must be followed. Declarations are preferred to be contained in a single <%! ... %> JSP declaration block, to centralize declarations within one area of the JSP page's body. Here is an example:

	Disparate declaration blocks
	Preferred declaration block

	 <%! private int hitCount; %>

 <%! private Date today; %>

 ...

 <%! public int getHitCount()

 {

 return hitCount;

 }

 %>
	<%!

 private int hitCount;

 private Date today;

 public int getHitCount()

 {

 return hitCount;

 }

%>

2.2.3 White Space

White space further enhances indentation by beautifying the JSP code to reduce comprehension and maintenance effort. In particular, blank lines and spaces must be inserted at various locations in a JSP file where necessary.

2.2.3.1 Blank Lines

Blank lines are used sparingly to improve the legibility of a JSP page, provided that they do not produce unwanted effects on the outputs. For the example below, a blank line inserted between two JSP expressions inside an HTML <PRE> block call causes an extra line inserted in the HTML output to be visible in the client's browser. However, if the blank line is not inside a <PRE> block, the effect is not visible in the browser's output.

	JSP statements
	HTML output to client

	 <pre>

 <%= customer.getFirstName() %>

 <%= customer.getLastName() %>

 </pre>
	 Joe

 Block

	 <pre>

 <%= customer.getFirstName() %>

 <%= customer.getLastName() %>

 </pre>
	 Joe

 Block

	 <%= customer.getFirstName() %>

 <%= customer.getLastName() %>
	 Joe Block

2.2.3.2 Blank Spaces

A white space character (shown as) must be inserted between a JSP tag and its body. For instance, the following

 <%= customer.getName() %>

is preferred over

 <%=customer.getName()%>

There must also be space characters separating JSP comment tags and comments:

	<%--

 - a multi-line comment broken into pieces, each of which

 - occupying a single line.

 --%>

<%-- a short comment --%>

2.2.4 Comments

Comments are used sparingly to describe additional information or purposes of the surrounding code. Here we look at two types for JSP files: JSP and client-side comments.

JSP Comments

JSP comments (also called server-side comments) are visible only on the server side (that is, not propagated to the client side). Pure JSP comments are preferred over JSP comments with scripting language comments, as the former is less dependent on the underlying scripting language, and will be easier to evolve into JSP 2.0-style pages. The following table illustrates this:

	Line
	JSP scriptlet with scripting language comment
	Pure JSP comment

	Single
	 <% /** ... */ %>

 <% /* ... */ %>

 <% // ... %>
	 <%-- ... --%>

	Multiple
	 <%

 /*

 *

 ...

 *

 */

 %>

	 <%--

 -

 ...

 -

 -- %>

	
	 <%

 //

 //

 ...

 //

 %>

	

Client-Side Comments

Client-side comments (<!-- ... -->) can be used to annotate the responses sent to the client with additional information about the responses. They must not contain information about the behavior and internal structure of the server application or the code to generate the responses.

The use of client-side comments is generally discouraged, as a client / user does not need or read these kinds of comments directly in order to interpret the received responses. An exception is for authenticity and legality purposes such as the identification and copyright information as described above. Another exception is for HTML authors to use a small amount of HTML comments to embody the guidelines of the HTML document structures. For example:

	<!-- toolbar section -->

 ...

<!-- left-hand side navigation bar -->

 ...

<!-- main body -->

 ...

<!-- footer -->

 ...

Multiline Comment Block

A multiline comment block, be it JSP or client-side, is decorated with the dash character "-". In the XML specification, the double-dash string "--" is not allowed within an XML comment block. Thus, for compatibility and consistency with this specification, no double-dash string is used to decorate comment lines within a multiline comment block. The following table illustrates this preference using a client-side comment block:

	Preferred
	Non-XML compliant

	 <!--

 - line 1

 - line 2

 ...

 -->

	 <!--

 -- line 1

 -- line 2

 ...

 -->

2.2.5 Naming Conventions

Applying naming conventions makes your web component elements easier to identify, classify and coordinate in projects. In this section, we will look at these conventions specific to JSP technology.

2.2.5.1 JSP Names

A JSP (file) name must always begin with a lower-case letter. The name may consist of multiple words, in which case the words are placed immediately adjacent and each word commences with an upper-case letter. A JSP name can be just a simple noun or a short sentence. A verb-only JSP name must be avoided, as it does not convey sufficient information to developers. For example:

 perform.jsp

is not as clear as

 performLogin.jsp

In the case of a verb being part of a JSP name, the present tense form must be used, since an action by way of backend processing is implied:

 showAccountDetails.jsp

is preferred over

 showingAccountDetails.jsp

2.2.5.2 Tag Names

The naming conventions for tag handlers and associated classes are shown below:

	Description
	Class Name

	XXX tag extra info (extending from javax.servlet.jsp.tagext.TagExtraInfo)
	XXXTEI

	XXX tag library validator (extending from javax.servlet.jsp.tagext.TagLibraryValidator)
	XXXTLV

	XXX tag handler interface (extending from javax.servlet.jsp.tagext.Tag/IterationTag/BodyTag)
	XXXTag

	XXX tag handler implementation
	XXXTag

In addition, tag names must not violate the naming conventions of class and interface as specified in the relevant code convention for Java technology.

To further distinguish a tag-relevant class from other classes, a package suffix, tags, or taglib can be applied to the package name of the class. For example:

 com.mycorp.myapp.tags.XXXTag

2.2.5.3 Tag Prefix Names

A tag prefix must be a short yet meaningful noun in title case, and the first character in lower-case. A tag prefix must not contain non-alphabetic characters. Here are some examples:

	Example
	OK?

	Mytaglib
	no

	myTagLib
	yes

	MyTagLib
	no

	MyTagLib1
	no

	My_Tag_Lib
	no

	MyTagLib
	no

2.2.6 HTML and JSP Code

This section of a JSP page holds the HTML body of the JSP page and the JSP code, such JSP expressions, scriptlets, and JavaBeans instructions.

Tag Library Descriptor

A tag library descriptor (TLD) file must begin with a proper XML declaration and the correct DTD statement. For example, a JSP 1.2 TLD file must begin with:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

This is immediately followed by a server-side style comment that lists the author(s), the date, the copyright, the identification information, and a short description about the library:

	<!--

 - Author(s):

 - Date:

 - Copyright Notice:

 - @(#)

 - Description:

 -->

The rules and guidelines regarding the use of these elements are the same for those defined for JSP files/fragment files.

The rest of the file consists of the following, in the order they appear below:

· Optional declaration of one tag library validator

· Optional declaration of event listeners

· Declaration of one or more available tags

It is recommended that you always add the following optional sub-elements for the elements in a TLD file. These sub-elements provide placeholders for tag designers to document the behavior and additional information of a TLD file, and disclose them to web component developers.

	TLD Element
	JSP 1.2 Recommended Sub-element

	attribute (JSP 1.2)
	description

	init-param (JSP 1.2)
	description

	tag
	display-name, description, example

	taglib
	uri, display-name, description

	validator (JSP 1.2)
	description

	variable (JSP 1.2)
	description

Indentation

Indentations must be filled with space characters. Tab characters cause different interpretation in the spacing of characters in different editors and must not be used for indentation inside a JSP page. Unless restricted by particular integrated development environment (IDE) tools, a unit of indentation corresponds to 4 space characters. Here is an example:

<myTagLib:forEach var="client" items="${clients}">

 <myTagLib:mail value="${client}" />

</myTagLib:forEach>

A continuation indentation aligns subsequent lines of a block with an appropriate point in the previous line. The continuation indentation is in multiple units of the normal indentation (multiple lots of 4 space characters):

	<%@ page attribute1="value1"

 attribute2="value2"

 ...

 attributeN="valueN"

%>

2.2.6.1 Indentation of Scripting Elements

When a JSP scripting element (such as declaration, scriptlet, expression) does not fit on a single line, the adopted indentation conventions of the scripting language apply to the body of the element. The body begins from the same line for the opening symbol of the element <%=, and from a new line for the opening symbol <%=. The body is then terminated by an enclosing symbol of the element (%>) on a separate line. For example:

	<%= (Calendar.getInstance().get(Calendar.DAY_OF_WEEK)

 =Calendar.SUNDAY) ?

 "Sleep in" :

 "Go to work"

%>

The lines within the body not containing the opening and the enclosing symbols are preceded with one unit of normal indentation (shown as in the previous example) to make the body distinctively identifiable from the rest of the JSP page.

Compound Indentation with JSP, HTML and Java

Compound indentation, for JSP elements intermingled with Java scripting code and template text (HTML), is necessary to reduce the effort of comprehending a JSP source file. This is because the conventional normal indentation might make seeing the JSP source file difficult. As a general rule, apply an extra unit of normal indentation to every element introduced within another one. Note that this alters the indentations of the final output produced for the client side to render for display. The additional indentations, however, are usually ignored (by the browser) and have no effect on the rendered output on the browser. For instance, adding more space characters before a <TABLE> tag does not change the position of a table. So, applying this convention for indentation makes this looks nicer:

	 <table>

 <% if (tableHeaderRequired) { %>

 <tr>

 <th>Last Name</th>

 <th>First Name</th>

 </tr>

 <% } %>

 <c:forEach var="customer" items="${customers}">

 <tr>

 <td><c:out value="${customer.lastName}"/></td>

 <td><c:out value="${customer.firstName}"/></td>

 </tr>

 </c:forEach>

 </table>

than this:

	 <table>

 <% if (tableHeaderRequired) { %>

 <tr>

 <th>Last Name</th>

 <th>First Name</th>

 </tr>

 <% } %>

 <c:forEach var="customer" items="${customers}">

 <tr>

 <td><c:out value="${customer.lastName}"/></td>

 <td><c:out value="${customer.firstName}"/></td>

 </tr>

 </c:forEach>

 </table>

2.2.7 JSP Declarations

As per the Java code convention, declarations of variables of the same types must be on separate lines:

	Not recommended
	Recommended

	 <%! private int x, y; %>
	 <%! private int x; %>

 <%! private int y; %>

JavaBeans components must not be declared and instantiated using JSP declarations but instead must use the <jsp:useBean> action tag.

In general, JSP declarations for variables are discouraged as they lead to the use of the scripting language to weave business logic and Java code into a JSP page which is designed for presentation purposes, and because of the overhead of managing the scope of the variables.

2.2.8 JSP Scriptlets

Whenever possible, avoid JSP scriptlets whenever tag libraries provide equivalent functionality. This makes pages easier to read and maintain, helps to separate business logic from presentation logic, and will make your pages easier to evolve into JSP 2.0-style pages (JSP 2.0 Specification supports but de-emphasizes the use of scriptlets). In the following examples, for each data type representation of the customers, a different scriptlet must be written:

customers as an array of Customers

	 <table>

 <% for (int i=0; i<customers.length; i++) { %>

 <tr>

 <td><%= customers[i].getLastName() %></td>

 <td><%= customers[i].getFirstName() %></td>

 </tr>

 <% } %>

 </table>

customers as an Enumeration

	 <table>

 <% for (Enumeration e = customers.elements();

 e.hasMoreElements();) {

 Customer customer = (Customer)e.nextElement();

 %>

 <tr>

 <td><%= customer.getLastName() %></td>

 <td><%= customer.getFirstName() %></td>

 </tr>

 <% } %>

 </table>

However, if a common tag library is used, there is a higher flexibility in using different types of customers. For instance, in the JSP Standard Tag Library, the following segment of JSP code will support both array and Enumeration representations of customers:

	 <table>

 <c:forEach var="customer" items="${customers}">

 <tr>

 <td><c:out value="${customer.lastName}"/></td>

 <td><c:out value="${customer.firstName}"/></td>

 </tr>

 </c:forEach>

 </table>

In the spirit of adopting the model-view-controller (MVC) design pattern to reduce coupling between the presentation tier from the business logic, JSP scriptlets must not be used for writing business logic. Rather, JSP scriptlets are used if necessary to transform data (also called "value objects") returned from processing the client's requests into a proper client-ready format. Even then, this would be better done with a front controller servlet or a custom tag. For example, the following code fetches the names of customers from the database directly and displays them to a client:

	<%

 // NOT RECOMMENDED TO BE DONE AS A SCRIPTLET!

 Connection conn = null;

 try {

 // Get connection

 InitialContext ctx = new InitialContext();

 DataSource ds = (DataSource)ctx.lookup("customerDS");

 conn = ds.getConnection();

 // Get customer names

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT name FROM customer");

 // Display names

 while (rs.next()) {

 out.println(rs.getString("name") + "
");

 }

 } catch (SQLException e) {

 out.println("Could not retrieve customer names:" + e);

 } finally {

 if (conn != null)

 conn.close();

 }

%>

The following segment of JSP code is better as it delegates the interaction with the database to the custom tag myTags:dataSource which encapsulates and hides the dependency of the database code in its implementation:

	<myTags:dataSource

 name="customerDS"

 table="customer"

 columns="name"

 var="result" />

<c:forEach var="row" items="${result.rows}">

 <c:out value="${row.name}" />

</c:forEach>

result is a scripting variable introduced by the custom tag myTags:dataSource to hold the result of retrieving the names of the customers from the customer database. The JSP code can also be enhanced to generate different kinds of outputs (HTML, XML, WML) based on client needs dynamically, without impacting the backend code (for the dataSource tag). A better option is to delegate this to a front controller servlet which performs the data retrieval and provide the results to the JSP page through a request-scoped attribute.

In summary:

· JSP scriptlets must ideally be non-existent in the JSP page so that the JSP page is independent of the scripting language, and business logic implementation within the JSP page is avoided.

· If not possible, use value objects (JavaBeans components) for carrying information to and from the server side, and use JSP scriptlets for transforming value objects to client outputs.

· Use custom tags (tag handlers) whenever available for processing information on the server side.

2.2.9 JSP Expressions

JSP Expressions must be used just as sparingly as JSP Scriptlets. To illustrate this, let's look as the following three examples which accomplish equivalent tasks:

Example 1 (with explicit Java code):

<%= myBean.getName() %>

Example 2 (with JSP tag):

<jsp:getProperty name="myBean" property="name" />

Example 3 (with JSTL tag):

<c:out value="${myBean.name}" />

Example 1 assumes that a scripting variable called myBean is declared. The other two examples assume that myBean is a scoped attribute that can be found using PageContext.findAttribute(). The second example also assumes that myBean was introduced to the page using <jsp:useBean>.

Of the three examples, the JSTL tag example is preferred. It is almost as short as the JSP expression, it is just as easy to read and easier to maintain, and it does not rely on Java scriptlets (which would require the web developer to be familiar with the language and the API calls). Furthermore, it makes the page easier to evolve into JSP 2.0-style programming, where the equivalent can be accomplished by simply typing ${myBean.name} in template text. Whichever choice is adopted, it must be agreed on amongst web developers and consistent across all produced JSP pages in the same project. It must be noted that the JSTL example is actually slightly different in that it gets the value of myBean from the page context instead of from a local Java scripting variable.

Finally, JSP expressions have preference over equivalent JSP scriptlets which rely on the syntax of the underlying scripting language. For instance,

 <%= x %>

is preferred over

 <% out.print(x); %>

2.2.10 JSP Pages in XML Syntax

JSP provides two distinct syntaxes: a "standard syntax" for writing JSP pages and an "XML syntax" for writing JSP pages as an XML document. JSP pages that are written using the standard syntax are referred to as "JSP pages." JSP pages that are written using the XML syntax are referred to as "JSP documents". This article primarily addresses JSP pages, but many of the concepts can be applied to JSP documents as well. Use of JSP documents is expected to increase as XML becomes more prevalent, and to address this the JSP 2.0 specification will introduce a much friendlier XML syntax.

It must be noted that the XML syntax used to author JSP pages is distinct from and is often confused with the XML view of a JSP page. The page author uses either the standard or the XML syntax to author a JSP page. The container then translates the JSP page into its XML view, which is exposed to Tag Library Validators.

2.2.10.1 JSP Document Structure

JSP documents have the following basic structure:

	 <? xml version="1.0" ?>

 <!--

 - Author(s):

 - Date:

 - Copyright Notice:

 - @(#)

 - Description:

 -->

 <jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

 xmlns:prefix1="URI-for-taglib1"

 xmlns:prefix2="URI-for-taglib2"

 version="1.2">

 JSP Document ...

 </jsp:root>

The first line is an optional XML Prolog that defines the page as an XML document. After the optional prolog comes the comments for the document. The element <jsp:root> defines this as a JSP document and must appear as the root element. The jsp namespace must be imported, and all tag libraries must be imported using this root element. The version attribute is required and specifies which version of JSP Specification is being used. The actual content of the JSP document appears as sub elements of the <jsp:root> element. Standard XML indentation rules must be applied consistently across the document, using 4 spaces as a single indentation unit.

A JSP document must be a well-formed XML document, so some elements, such as <% %> must be replaced by their XML equivalent, such as <jsp:scriptlet />. See the JSP Specification for details.

2.2.10.2 XML Comments

The JSP Specification is unclear about whether XML-style comments are stripped on output, so to be safe if a comment is intended to reach the client, it must be enclosed in a <jsp:text> node, as follows:

	 ...

 <jsp:text><![CDATA[

 <!--

 - Multiline comment

 - to be sent to client.

 -->

]]></jsp:text>

 ...

2.2.10.3 Java Code in JSP Documents

When writing Java code inside declarations, scriptlets, and expressions, a CDATA element must be used only when necessary to ensure your code does not break the document structure.

	 ...

 <jsp:scriptlet>

 for(int level = 0; level < 3; level++) {

 </jsp:scriptlet>

 <tr>

 <td>

 <jsp:expression><![CDATA[

 "<h" + level + ">Text</h" + level + ">"

]]></jsp:expression>

 </td>

 </tr>

 <jsp:scriptlet>

 }

 </jsp:scriptlet>

 ...

Unlike those in the standard syntax, XML indentation rules must be followed regardless of the contents of an element.

2.2.11 Programming Practices

In general, avoid writing Java code (declarations, scriptlets and expressions) in your JSP pages, for the following reasons:

· Syntax errors in Java code in a JSP page are not detected until the page is deployed. Syntax errors in tag libraries and servlets, on the other hand, are detected prior to deployment.

· Java code in JSP pages is harder to debug.

· Java code in JSP pages is harder to maintain, especially for page authors who may not be Java experts.

· It is generally accepted practice not to mix complex business logic with presentation logic. JSP pages are primarily intended for presentation logic.

· Code containing Java code, HTML and other scripting instructions can be hard to read.

· The JSP 2.0 Specification is de-emphasizing scriptlets in favor of a much simpler expression language. It will be easier to evolve your JSP pages to JSP 2.0-style programming if Java code is not used in your pages.

2.2.11.1 JavaBeans Component Initialization

JSP technology provides a convenient element to initialize all PropertyDescriptor - identified properties of a JavaBeans component. For instance:

 <jsp:setProperty name="bankClient" property="*"/>

However, this must be used with caution. First, if the bean has a property, say, amount, and there is no such parameter (amount) in the current ServletRequest object or the parameter value is "", nothing is done: the JSP page does not even use null to set that particular property of the bean. So, whatever value is already assigned to amount in the bankClient bean is unaffected. Second, non-elementary properties that do not have PropertyEditors defined may not be implicitly initialized from a String value of the ServletRequest object and explicit conversion may be needed. Third, malicious users can add additional request parameters and set unintended properties of the bean, if the application is not carefully designed.

If you still prefer to use property="*" in the jsp:setProperty tag for the purpose of producing neater code, then we recommend that you add a comment preceding the jsp:setProperty tag about parameters expected to be present in the ServletRequest object to initialize the bean. So, in the following example, from the comment we know that both firstName and lastName are required to initialize the bankClient bean:

<%--

 - requires firstName and lastName from the ServletRequest

 --%>

<jsp:setProperty name="bankClient" property="*" />

2.2.11.2 JSP Implicit Objects

Direct use of JSP implicit objects to gain references to these objects rather than API calls is preferred. So, instead of using

getServletConfig().getServletContext().getInitParameter("param")

to access the initialization parameter as provided by the ServletContext instance, one can make use of the readily available implicit object:

application.getInitParameter("param")

In the case that only the value of an initialization parameter is outputted, it would be even better to use a JSTL tag to access the initialization parameter:

<c:out value="${initParam['param']}" />

2.2.11.3 Quoting

The uniform use of quoting is adopted. Quotations must be bound by two double-quote characters " instead of two apostrophe characters ' .

	Non-uniform quoting
	Preferred quoting

	<%@ page import='javabeans.*'%>
<%@ page import='java.util.*'%>
	<%@ page import="javabeans.*" %>
<%@ page import="java.util.*" %>

An exception is when apostrophes are needed, for example when double-quote characters are required within the scripting language:

<jsp:include page='<%= getFoodMenuBar("Monday") %>' />

2.2.11.4 Using Custom Tags

If a custom tag does not have a body content, the content must be declared explicitly with empty (rather than defaulting to the word "JSP") like this in the tag library descriptor:

	<tag>

 <name>hello</name>

 <tag-class>com.mycorp.util.taglib.HelloTagSupport</tag-class>

 <body-content>empty</body-content>

 ...

</tag>

This tells the JSP container that the body content must be empty rather than containing any JSP syntax to be parsed. The effect is to eliminate unnecessarily allocation of resources for parsing of empty body contents.

Empty tags must be in short XML elements, rather than using opening-closing XML element pairs to improve readability. So,

<myTag:hello />

is preferred over

<myTag:hello></myTag:hello>

2.2.11.5 Use of TagExtraInfo and TagLibraryValidator

Sometimes, the valid ways to use a tag library cannot be expressed using the TLD alone. Then, a TagExtraInfo class or a TagLibraryValidator class must be written and registered in the TLD so that errors in tag library can be caught at translation time.

2.2.11.6 Use of JavaScript Technology

JavaScript technology must be independent of particular features of browser types in order for the scripts to run properly.

Where it makes sense, it is a good idea to keep JavaScript code in individual files separate from JSP bodies, and use a statement like the following to import the JavaScript code into the JSP bodies:

 <script language=javascript src="/js/main.js">

This improves the chance for the JavaScript code to be reused, maintains the consistent behavior of the JavaScript code across multiple JSP pages, and reduces the complexity of JSP pages.

2.2.11.7 Cascading Style Sheets

Use cascading style sheets to centralize control of common characteristics of headings, tables, and so on. This improves the consistency of presentation to the users and reduces maintenance effort and the code size of the JSP pages. So, instead of embedding the style information in the HTML tags like the one below:

<H1>Chapter 1</H1>

...

<H1>Chapter 2</H1>

...

Define the style information in a single style sheet myJspStyle.css which contains:

H1 { color: blue }

And apply the style sheet to the JSP page:

	<link rel="stylesheet" href="css/myJspStyle.css" type="text/css">

...

<H1>Chapter 1</H1>

...

<H1>Chapter 2</H1>

...

2.2.11.8 Use of Composite View Patterns

When a JSP page requires a certain and complex structure which may also repeat in other JSP pages, one way to handle this is to break it up into pieces, using the Composite View pattern. For instance, a JSP page sometimes has the following logical layout in its presentation structure:

	header

	menu bar
	main body

	
	footnote

	footer

In this manner, this composite JSP page can be divided into different modules, each realized as a separate JSP fragment. Constituent JSP fragments can then be placed in appropriate locations in the composite JSP page, using translation-time or request-time include JSP tags. In general, when static include directives are used to include a page that would not be requested by itself, remember to use the .jspf extension and place the file in the /includes/jspf/ directory of the Web application archive (war). For example:

	<%@ include file="/WEB-INF/jspf/header.jspf" %>

...

<%@ include file="/WEB-INF/jspf/menuBar.jspf" %>

...

<jsp:include page="<%= currentBody %>" />

...

<%@ include file="/WEB-INF/jspf/footnote.jspf" %>

...

<%@ include file="/WEB-INF/jspf/footer.jspf" %>

...

.

2.3 HTML

2.3.1 Naming Conventions

1. The name of HTML files must always end with the .html extension

2.3.2 Code Organization and Style

2. Command tags must be in all lower case

3. Closing command tags must either be on the same line as the opening command tag or at the same level of indentation if on a separate line

4. The name attribute must be the same as the value attribute for each command tag element

5. All "href=" fields in anchor tags must always be enclosed in quotes

6. Values of property tags must be enclosed in quotation marks (“”)

2.4 JavaScript

One note about using JavaScript, use as little as possible. Although JavaScript takes as much time to download as HTML, JavaScript is interpreted by the browser as it is downloaded, which takes even more time.

2.4.1 Naming Conventions

7. JavaScript files must always end with the .js extension

8. JavaScript file names must be all lower case

2.4.2 Code Organization and Style

9. All statements must end with a semicolon (;)

10. Place all JavaScript in a .js file and include the .js file in the web page where needed

11. Except where noted, JavaScript guidelines and standards must follow in-step with the Java coding standards and guidelines when applicable

3. Javadoc

This section gives guidelines for documenting Java code using the javadoc tool.

3.1 Organization and Style

12. A doc comment must precede all class, interface, static field, constructor and method declarations

13. A doc comment consist of two parts – a description, followed by block tags

14. Each line in the doc comment must be indented to align with the code below it

15. The first line of the doc comment must only contain the begin-comment delimiter (/**)

16. Each line, except the first and last line, must begin with an asterisk (*)

17. Separate multiple description paragraphs in a doc comment with the <p> tag

18. Insert a blank comment line between the description and the list of tags

19. The first line that begins with an @ character ends the description

20. The last line of the doc comment contains the end-comment delimiter (*/)

21. Omit parentheses for the general form of constructors and methods

	The add method enables you to insert items
(preferred)

Tha add() method enables you to insert items
(avoid)

22. Use 3rd person descriptive and not 2nd person prescriptive:

	Gets the label
(preferred)

Get the label
(avoid)

23. Method descriptions must begin with a verb phrase

	Gets the label of this button
(preferred)

This method gets the label of this button
(avoid)

24. Class, interface, and field descriptions can omit the subject and just state the object:

	A button label
(preferred)

This field is a button label
(avoid)

25. An @param tag is required for every parameter, even when the description is obvious

26. The @return tag is required for every method that returns something other than void

27. Use the code tag (<code>…</code>) for keywords and names when mentioned in a description or in an @param tag. These include:

· Java keywords

· Package names

· Class names

· Method names

· Interface names

· Field names

· Argument names

· Code examples

	* @return
<code>true</code> if the image is completely

*
loaded and was painted successfully;

*
<code>false</code> otherwise.

28. Order of block tags:

· @param (classes, interfaces, methods and constructors only)

· @return (methods only)

· @throws (@exception was the original tag)

· @since

· @deprecated
29. Use the following guideline when ordering multiple instances of the same tag:

· Multiple @param tags must be listed in argument-declaration order. This makes it easier to visually match the list to the declaration

· Multiple @throws tags (also known as @exception) must be listed alphabetically by the exception names

3.2 Format

3.2.1 Descriptions

30. The first sentence of each doc comment must be a summary sentence, containing a concise but complete description of the API item (An API item is a package, class, interface, or method).

	/**

* The Properties class represents a persistent set of properties. The

* Properties can be saved to a stream or loaded from a stream. Each * key and its corresponding value in the property list is a string.

* <p>

* A property list can contain another property list as its "defaults"; this

* second property list is searched if the property key is not found in the

* original property list.

*/

3.2.2 The @param Tag

31. The @param tag is followed by the name (not data type) of the parameter, followed by a description of the parameter

32. The first noun in the description is the data type of the parameter. (Articles like "a", "an", and "the" can precede the noun.)

33. Additional spaces can be inserted between the name and description so that the descriptions line up in a block

34. Dashes or other punctuation must not be inserted before the description

35. Parameter names are lowercase by convention

36. The data type starts with a lowercase letter to indicate an object rather than a class

37. The description begins with a lowercase letter if it is a phrase (contains no verb), or an uppercase letter if it is a sentence

38. End the phrase with a period only if another phrase or sentence follows it

	/**

* The Properties class represents a persistent set of properties. The

* Properties can be saved to a stream or loaded from a stream. Each * key and its corresponding value in the property list is a string.

* <p>

* A property list can contain another property list as its "defaults"; this

* second property list is searched if the property key is not found in the

* original property list.

*

* @param key the hashtable key

*/

3.2.3 The @return Tag

39. Omit @return for methods that return void and for constructors

40. Supply return values for special cases (such as specifying the value returned when an out-of-bounds argument is supplied).

41. Use the same capitalization and punctuation as used in @param
	/**

* The Properties class represents a persistent set of properties. The

* Properties can be saved to a stream or loaded from a stream. Each * key and its corresponding value in the property list is a string.

* <p>

* A property list can contain another property list as its "defaults"; this

* second property list is searched if the property key is not found in the

* original property list.

*

* @param
key
the hashtable key

* @return

the value in this property list with the specific key
*/

3.2.4 The @throws Tag

42. An @throws tag must be included for all checked exceptions(declared in the throws clause) and also for any unchecked exceptions that the caller might reasonably want to catch, with the exception of NullPointerException

43. Errors must not be documented as they are unpredictable.

	/**

* The Properties class represents a persistent set of properties. The

* Properties can be saved to a stream or loaded from a stream. Each * key and its corresponding value in the property list is a string.

* <p>

* A property list can contain another property list as its "defaults"; this

* second property list is searched if the property key is not found in the

* original property list.

*

* @param
key
the hashtable key

* @return

the value in this property list with the specific key

* @throws
ClassCastException
if this Properties object contains

*
any keys or values that are not

*
Strings

*/

3.2.5 The @since Tag

44. Specify the product version when the Java name was added to the API specification (if different from the implementation)

45. When a new package is introduced, specify an @since tag in its package description and each of its classes

46. When a class (or interface) is introduced, specify one @since tag in its class description and no @since tags in the members

47. Add an @since tag only to members added in a later version than the class

	/**

* The Properties class represents a persistent set of properties. The

* Properties can be saved to a stream or loaded from a stream. Each * key and its corresponding value in the property list is a string.

* <p>

* A property list can contain another property list as its "defaults"; this

* second property list is searched if the property key is not found in the

* original property list.

*

* @param
key
the hashtable key

* @return

the value in this property list with the specific key

*

* @throws
ClassCastException
if this Properties object contains
*
any keys or values that are not
*
Strings

* @since
1.2
*/

3.2.6 The @deprecated Tag

48. The @deprecated description in the first sentence must tell the user when the API was deprecated and what to use as a replacement

49. Only the first sentence will appear in the summary section and index.

50. Subsequent sentences can also explain why it has been deprecated.

51. When generating the description for a deprecated API, the Javadoc tool moves the @deprecated text ahead of the description, placing it in italics and preceding it with a bold warning: "Deprecated".

52. An @link tag must be included that points to the replacement method

	/**

* The Properties class represents a persistent set of properties. The

* Properties can be saved to a stream or loaded from a stream. Each * key and its corresponding value in the property list is a string.

* <p>

* A property list can contain another property list as its "defaults"; this

* second property list is searched if the property key is not found in the

* original property list.

*

* @param
key
the hashtable key

* @return

the value in this property list with the specific key

*

* @throws
ClassCastException
if this Properties object contains
*
any keys or values that are not
*
Strings

* @since
1.2

* @deprecated
as of v1.12
replaced by {@link

*

#newMethod(int)}

*/

4. Exception Handling

This section gives rules and guidelines for exception handling. Both checked and unchecked exceptions are discussed in this section.

4.1 Unchecked Exceptions

Runtime exceptions, or unchecked exceptions, are instances of the RuntimeException class or one of it’s subclasses. Unchecked exceptions are usually thrown for problems arising in the Java Virtual Machine (VM) environment. As such, programmers must refrain from throwing these, as it is more convenient for the Java VM to manage this part.

53. If an exception does not signify a situation that a calling method must deal with, the exception must be unchecked

54. Do not declare unchecked exceptions in the throws clause of the throwing method

4.2 Checked Exceptions

Compiler-enforced (checked) exceptions are instances of the Exception class or one of its subclasses -- excluding the RuntimeException branch. The compiler expects all checked exceptions to be appropriately handled by the application.

55. If an exception signifies a situation that a calling method must deal with, the exception must be checked

56. Checked exceptions must be declared in the throws clause of the method throwing them

	public static float calculateReturn (float dividend, float divisor) throws

 MyCustomException {

 …

{

57. Calling methods must take care of thrown exceptions by either catching or declaring them in their own throws clause

	private void getReturnValue () {

 try {

 float returnValue = object.calculateReturn(dividend, divisor);

 catch(MyCustomException mce) {

 //do something

 }

}

58. Catch exceptions and map them into a custom exception class and re-throw the exception

	public static float calculateReturn (float dividend, float divisor) throws

MyCustomException {

float q;

try {

q = dividend/divisor;

} catch(ArithmeticException ae) {

throw new MyCustomException("Can't divide by zero.", ae);

}
}

59. A custom exception class must extend the Exception class with a constructor that takes two arguments; a message, which can be displayed on the error stream; and the real exception, which caused the custom exception to be thrown

	public class MyCustomException extends Exception {

private Exception exception;

public MyCustomException (String errorMessage,

Exception exception) {

super(errorMessage);

this.exception = exception;

}

public Exception getException() {

return exception;

}

}

60. Use the final statement on all I/O statements after a try-catch block

	public class MyCustomException extends Exception {

private Exception exception;

public MyCustomException (String errorMessage,

Exception exception) {

super(errorMessage);

this.exception = exception;

}

public Exception getException() {

return exception;

}

}

5. Logging

Logging provides a convenient way to see what is happening in an application with having to step through the code with a debugger. Another use of logging is to provide an audit trail of who did what and when. The following section provides guidelines for logging application events.

61. Use a logging API, such as Log4J, whenever possible

62. Avoid using Standard.out.println or Standard.err.println as a means of logging

63. When instantiating a logger instance, assign the logger to a private static variable

	public class MyClass {

Logger logger = Logger.getLogger("MyClass");

public static float calculateReturn (float dividend, float divisor) throws

MyCustomException {

float q;

try {

if (logger.isDebugEnabled) {

logger.debug(“divedend = “ + dividend);

}

q = dividend/divisor;

} catch(ArithmeticException ae) {

logger.error(“Can’t divide by zero ”, ae);

}

}

}

64. Always add logging in a catch statement of a try-catch block when the exception is not rethrown

	public static float calculateReturn (float dividend, float divisor) throws

MyCustomException {

float q;

try {

q = dividend/divisor;

} catch(ArithmeticException ae) {

logger.error(“Can’t divide by zero ”, ae);

}
}

65. When logging an exception, log a custom message along with the exception class being thrown and avoid using getMessage()

	public static float calculateReturn (float dividend, float divisor) throws

MyCustomException {

float q;

try {

q = dividend/divisor;

} catch(ArithmeticException ae) {

logger.error(“Can’t divide by zero ”, ae);

}
}

66. If logging statements appear in a performance-critical section of code, they must be wrapped inside an if statement that checks the current level of the logger

	public static float calculateReturn (float dividend, float divisor) throws

MyCustomException {

float q;

try {

if (logger.isDebugEnabled) {

logger.debug(“dividend = “ + dividend);

}

q = dividend/divisor;

} catch(ArithmeticException ae) {

logger.error(“Can’t divide by zero ”, ae);

}

}

67. To log the current stack trace, log Throwable

	public static float calculateReturn (float dividend, float divisor) throws

MyCustomException {

float q;

try {

q = dividend/divisor;

} catch(ArithmeticException ae) {

logger.error(“Can’t divide by zero ”, new Throwable());

}

}

68. At a minimum, a logging statement must capture the following information:

· Date and Time

· Object name

· Line

CDI Java Coding Standards

Prepared for:

California Department of Insurance

300 Capital Mall, Suite 1400

Sacramento, CA 95814

FINAL

June 2006

Prepared By:

�

Natoma Technologies, Inc.

8801 Folsom Blvd., Suite 107

Sacramento CA 95826

�

Natoma Technologies, Inc.
- 3-
July 31, 2005

