
1

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

CDI APPLICATION TEMPLATE

Department of Insurance

Information Technology Division
Application Development & Maintenance Bureau (ADAM)

Document Prepared by:

Aguilar-Barajas, César A.

2008 Architectural Design prepared by:

2008 Common Jar Collective

Aguilar, César
Behrens, Bradley

Christian, Cathi
Franklin, Rick

Huang, Bill
Love, Scott
Lui, William

Porco, Scott
Wright, Chris

Yum, Peter

Draft

April 17, 2008

2

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

Table of Contents

1. Justification..3
2. Overview...3
3. Application Scenario ...4
4. Scope ..5
5. Execution..5
6. Patterns ..5

6.2 Composite View Design Pattern ..7
7. Quick Setup..8

7.2 Setting up Application Parameters File...9
7.3 Setting up the Page Properties Files ...10

8. Application Architecture ...12
8.1 Request Dispatching Login in Application Template...........................12
8.2 Understanding Class Relationships and Responsibilities14

9. Security Framework ..18
10. Following Best Practices...22

10.1 Returning Data from Delegate and DAO classes................................22
10.2 Store Application Messages Externally ..22
10.3 Application Messages...22
10.4 Displaying Application Messages..23
10.5 Error Handling ...23
10.6 Validation ...23

11. Check List for Running Application Project ..24

3

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

1. Justification

 The main purpose for building an application template is to provide a
starting point for application development that incorporates resources and
features that have been adopted as standards for all CDI web applications.

Having an application template should speed up development time since
developers won’t need to recreate the standard components that are common in
all applications.

2. Overview

 The CDI’s application template consists of two jdeveloper projects: the
common project that contains a collection of reusable code for common use and
the template project that demonstrates a finalized project implementing all the
CDI standards for J2EE application development.

 The common project’s output is a Jar library that is attached to the CDI’s
application template where the method invocation is sampled.

 Reusable classes in the common project can be customized inside the
project scope by extending the library classes and making the necessary
changes to the project.

 The CDI’s application template contains two types of classes: sample
classes and customizable classes. Sample classes provide an example of how
classes should be implemented and how they collaborate with the rest of the
classes. Customizable classes are skeleton classes that can be thrown away or
used as the starting point for creating specific classes needed for you project.

4

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

3. Application Scenario

The application scenario demonstrates the typical usage of the application

template. The topic has been randomly selected and doesn’t reflect the
requirements of any CDI’s web application.

CDI’s Insurance Company Contact List

CDI maintains a database with contact information of many insurance
companies. This information needs to be accessible to all internal users and
external users with the difference between the two being the latter can only
retrieve their own company information. As a result, the intranet portion of the
application is indented for CDI and the Internet portion for external users.

CDI’s analysts retrieve company records by choosing it from a report list,

or by searching them using a web page form. CDI analysts are authenticated
using the Licensing database access control list.

The Internet portion allows Companies to access their individual profile by

validating their National Association of Insurance Commissioners (NAIC) id
against the column value in our contact list data table.

5

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

4. Scope

 The CDI’s application template has the following resources/features:

1. Implements the MVC design pattern
2. Implements the composite view pattern to manage a standard look and

feel through the application. A composite view pattern composes web
pages of multiple subviews

3. It contains a reusable front controller class and provides sample
handler classes, delegate classes, DAO classes, TO classes, and a
cached data manager class

4. Uses the log4j library for logging messages using a file appender, a
console appender and an SMTP appender

5. Uses a resource bundle properties file to load application parameters
that need to be changed when switching from production and test
environments

6. Uses the latest CSS guidelines that have been released by the web
services unit

7. Samples a security mechanism in the view and controller layers of the
MVC model for protecting resources from anonymous access.

5. Execution

 Application template can be found in the CVS repository under the name

“TemplatePrj”. There are no prerequisites for running application template in
JDeveloper. However, it is highly recommendable to customize the application
parameters (explained later in section 7).

6. Patterns

 Two different patterns are used in the CDI template based applications.
The most important one is the Model-View-Controller (MVC) pattern. The main
goal of this pattern is to isolate the business logic from the user interface. The
MVC pattern divides an application into three different layers: the presentation
(user interface), domain logic and data access. For implementing the
presentation layer we used another pattern: the composite view design pattern,
which is used to make all JSP pages share a similar layout structure. This is the
second pattern has been adopted as the standard in CDI applications.

6.1 MVC Design pattern

 The following diagram shows how classes are layered when
implementing the MVC design pattern.

6

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

California Dept. of Insurance
MVC Design Pattern Implementation

index.jsp

FrontController
.java

Other
Functions

(Print, Help,
FAQs, etc)

The reads the event request parameter to
determine which handler to call. This module is called
only when the URL starts with a mapping url-pattern.
Web.XML has been configured to call the controller based
upon the URL:

These modules are called “instantly” (i.e. they don’t
go thru the Controller) if the URL is not prefaced
with a url-pattern used in the servlet mapping tag of
the web descriptor. Usually, these functions open in
a new window, to not interfere with the main
purpose of the application.

xxxHandler
.java

The is specific to a particular function, such as
Survey Type, Registration, etc. It utilizes the action (and
optionally a function) request parameter to determine
which action to perform against the data. Its function is to
utilize the HTTP Request and HTTP Response objects,
and to create/destroy session variables as needed. Once
it retrieves data from a web page, it calls the Delegate to
perform the action requested.

After control is returned from the delegate, the Handler
determines which page to display next, and uses the
RequestDispatcher to call/display the JSP:

xxxDelegate
.java

The is responsible for processing a logical
business transaction such as Registration, processing
an application, etc. Its function is to encapsulate all
classes that make up a logical business transaction.
Participants include, TOs, DAOs, Helper and Business
classes. The also catches any exceptions
thrown by lower level classes and translates the
exception into a user friendly error message.

xxxHelper
.java

xxxBusiness
.java

xxxDAO.java

A Business class implements business specific
logic such as server-side validations, credit card
processing, license verification, etc. A Business
class should implement a single business
function, which, when called by a Delegate
class, can be included in a logical business
transaction.

classes are used
to isolate complex logic or
to perform a specific sub-
function of another class.

The (Data Access Object) handles all
database access operations. s are called
exclusively by a Delegate.

View

Controller

Model

xxx.jsp

is always used to display content to the
user. This allows for a common banner/heading and
NavBar without having to include it in several pages.
The parameter

controls what is displayed in the body of the page

xxxTO.java

The (Transfer Object)
encapsulates business data using
private instance variables and uses
public getters/settters to access the
data.

Figure 1 Explanation of the MVC architectural design

7

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

6.2 Composite View Design Pattern

 The composite view pattern builds composite views from multiple
subviews. The composite view pattern implements a templating
mechanism to provide a consistent look and feel for all pages. The
template itself is a JSP page, with parameters for the parts that need to
change with each page. In CDI’s web application template, the subviews
Url are fed the container structure from parameters which are extracted
from the XML page properties files.

The composite view container implemented for CDI is divided in six
subviews: header/banner, side navigation bar, application title, page title,
main content and footer. In the current implementation all subviews are
static except the navigation bar and main content subviews.

Figure 2 Structure of Composite View Container

8

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

7. Quick Setup

 7.1 Setting up Log4j

 The sample log4j configuration file included in application template
instructs log4j to write logging messages to a file and to email the
messages using a SMTP server. The “CA” element logs messages into
the console.

 Open PROJECT_HOME\cong\log4j.xml and look for element

<param name="file" value="../logs/Log4j_template.log"/>.

This is the path location to the file where the log messages are going to be
written. Replace substring “template” with your own (application’s name is
a good choice). If you don’t change the name, it’s very likely you will be
mixing log messages with another application.

 Locate the SMTPAppender node. Locate child element “param”
with an attribute type named “name” and set “to”.

<param name="To" value="aguilar-barajasc@insurance.ca.gov,
aguilar-barajasc@insurance.ca.gov" />

This element contains the email address where the log messages
are going to be sent. Replace the email addresses at your convenience.
The SMTPappender contains a filter for logging FATAL messages only.
Therefore, any debug, info, warn, error messages won’t be logged using
the email appender.

 If you need more information about log4j, you can read “Logging
with log4j—An Efficient Way to Log Java Applications” available at
http://www.developer.com/open/article.php/10930_3097221_1 or “Report
Application errors by email”
http://www.onjava.com/pub/a/onjava/2004/09/29/smtp-logging.html

9

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

 7.2 Setting up Application Parameters File

 The application parameter file contains configurable parameters for
the application.

 The type of parameters included in the CDI’s web application
template includes parameters needed for in view layer of the MVC (view
composite container and controller), database parameters and email
parameter. However, the set of parameter included in the sample file can
be expanded to include any custom variables since the parameters value
by using the appropriate API call.

 List of elements available in the file:

 View Composite Container related parameters:

intranet – Determines whether the intranet or internet portion of the
web application should be activated.
applicationTitle – used by the composite view container to fill
application name section

 Database parameters:

web_app – indicates to the database connection factory whether it
should use the database connection pool available on the JNDI or
establish database connections on its own.

If “web_app” was set to true:

 JNDI – JNDI name of the database connection pool

 Otherwise:

 production – controls which dbUrl should be used

oracle-driverClass – holds driver class name
db-url-prod – dbUrl used for connecting to production
db-url-test – dbUrl used for connecting to test

 db-username – user to be logged in as (schema name)
 db-password – the password that coincides with db-username

 Miscellaneous parameters:

emailer-application-settings (tree) - Email settings for Emailer
class.

 File location is PROJECT_HOME\conf\ applicationParameters.xml.

 Note: Node names must be unique (rule is not enforced
programmatically).

10

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

 7.3 Setting up the Page Properties Files

The pageProperties xml file allows the web application to fill the
sections of the view container which make up the composite container
declaratively.

The idea behind using a page properties file is to declare in an

external file the parameters that are needed by the composite view
container to fill the sections of the container.

Declaring the parameter values in a XML file is preferred over

declaring them programmatically. Implementation is located in the
PageProperties class. Developers only need to understand the metadata
in the XML file and don’t need to worry about the details of the class
implementation.

The number of <page> node elements represents the number of

JSP pages that are available in the web application. Therefore, for each
screen you need in your application, you need to include a page node in
the page properties file.

A description of the elements is listed below:

• keyName
A unique name that is used as an identifier for the web page.
If you use duplicate elements, an exception will be thrown.
The key name is used as the key value in a hash table.
Example: <keyName>InternetIndex</keyName>

• url
The project's relative url path to the content subview.
Example: <url>Internet/index.jsp</url>

• windowTitle
The title to be displayed in the browser window. Example:
<title>Welcome to Internet Index Page</title>

• pageTitle
The wording to be displayed in the “page title” subview of the
container. Example: <pageTitle>Welcome to Internet Index
Page</pageTitle>

• blankNavBar (optional)
If present on a page node, the navigation bar will be
excluded from the container. This is the only field that can be
omitted. If this element is omitted, container displays the
navigation bar. Example:
<blankNavBar>true</blankNavBar>

The only element that can be omitted in the page properties file is

blankNavBar. If you miss one of the other elements, the application will
throw an exception, which will be categorized as fatal; therefore, log4j will

11

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

generate an email informing the issue (remember to update the email
address in the Log4J configuration file).

Sample page properties node:

 <page>
 <keyName>ErrorPage</keyName>
 <url>Shared/error.jsp</url>
 <windowTitle>Error Page</windowTitle>
 <pageTitle>Internal Application Error </pageTitle>
 </page>

The following diagram lists all the screens that are used in

application template.

COMPANY
SEARCH

INTRANET
JSP’s

 INTERNET
JSP’s

LOGIN

MAIN MENU

LOGIN

COMPANY LIST

COMPANY DETAILS

ERROR

PageProperties.
Internet.xml

PageProperties.
Intranet.xml

Figure 3 Page Properties Nodes in Application Template

 Main Menu, Company Details and Error pages are shared screens
between the two scopes of the application. These three pages are stored in the
“Shared” folder. There are two versions of the login page, one on the “intranet:
scope and one in the internet “scope”. Company list, company search are located
only in the intranet portion, so they can’t be accessed from the internet scope.

 The PageProperties class parses the pageproperties XML files and
services the other classes with the information stored in the XML page properties
files.

12

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

8. Application Architecture

 8.1 Request Dispatching Login in Application Template

 The architecture sampled in the CDI’s application template has
been adopted from all the lessons learned since the first release of the
application back in 2006.

 The main idea of the application architecture is that the controller
and the handlers work together to identify a request and generate the
response to the client.

 Furthermore, the controller identifies a user request by parsing the
event parameter and invoking a handler class. Then, the handler class
parses a function parameter to identify which delegate function to invoke.

 Therefore, the event and function parameter are joined to identify a
user request and invoke the business components.

 The sampled architecture used in the CDI’s application template is
described in the following diagram:

13

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

Figure 4 Recommended Request Dispatching design in CDI’s web application

14

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

 8.2 Understanding Class Relationships and Responsibilities

A description to the class responsibilities can be found on the

HTML based API reference document has been created with the javadoc
utility. HTML files are located in JDEV__MY_WORK__DIR/TemplateWS
/TemplatePrj /javadoc/index.html.

Class relationships are described in the following UML diagram

created for the template application project.

15

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

Figure 5 Class Diagram of CDI’s web application template

16

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

 8.3 Libraries

Application Template uses an in-house library that encloses the classes that are

common to all applications. This library has been packaged into a JAR file (java
archive) that has been called common.jar.

The library contains the compiled classes, the source code and the javadoc

documentation. Application template has been set up for accessing/executing the
contents of the library when browsing template’s source code or when debugging at
run time.

This library has already been attached to application template, so you don’t

need to do anything to stick it into your project if you application template as your base
project.

Classes like DeploymentListener, PageProperties, ApplicationParameters,

ApplicationLogger and RequestHandler are mandatory to use, so the same design is
shared by all applications.

Refer to class diagram of Application template for identify how class are used in

application template.

The following diagram shows the libraries content included in application

template.

17

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

Application Template & Common Jar

JSP’s

Class Structure

Delegates

Processing of
business logic.

DAO’s

Processing of
databases operations.

Handlers

Identifies which
action to perform.

 Responds to user’s request.
Controller

Libraries

 Log4J.jar
Logging Utility

Standard.jar
JSTL implementation

classes

Common.Jar

 Application
Logger

 Application
Parameters

Page
Properties

JSTL
Constants

Deployment
Listener

Application
Parameter
NotFound
Exception

Constants

Emailer Page
Constants

DateUtil

String
Util

Validate

Page
Properties
NotFound
Exception

util

Request
Handler

handler

BaseDAO

dao

Application
MessageTO

Code
ValueTO

to

Figure 6 Contents of Jar File and relationship with CDI’s web application template

18

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

9. Security Framework

Application template samples a controller security mechanism retrieving user
credentials from the COSMOS user repository.

Controller security is implemented in the controller layer of the MVC pattern.

Therefore, the controller class is responsible for protecting the handler classes and is
considered the single point of user validation.

Application security is divided in two major components: authentication and

authorization. Authentication consists in validating user’s credentials against a user’s
repository, which could be a database table, an XML file, LDAP directory, etc. Authorization
refers to the user’s ability to access resources based on business rules.

The following state diagram depicts the transitions happening when protecting a

resource using controller security.

Figure 7 State Diagram for Security Mechanism

Application template uses a HTML login form for entering user’s credentials. The

following components compose the authentication schema: {Internet, Intranet}/login.jsp,
LoginHandler, LoginDelegate, LoginDAO and LoginTO. If you need to change the login
tables, you can simply edit LoginDAO where you would change the SQL string to match the
tables that match your user’s repository.

For a better understanding of how authorization and authentication is implemented in

application template, the following two sequence diagrams show the time flow of function
calls between classes.

19

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

Figure 8 Sequence Diagram: Logging into application template

20

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

Figure 9 Sequence Diagram: PageProperties Class Interactions

21

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

View layer security refers to implementing a security mechanism in the content
subview of the composite view pattern. Basically, the idea is to protect individually the JSP
pages that are used to fill the content subview of the view container. That is because JSP
pages can be invoked directly without calling the front controller and the view container.
Hackers would need only to figure out the corresponding URL for accessing the page.

In application template all pages are considered protected, except the container which

is the parent Jsp and it is not referred as a content element in the page properties file, On the
protected resources, there is logic that checks whether the page came through controller or is
accessed directly. If the page is being accessed directly; request is simply forwarded to the
front controller.

22

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

10. Following Best Practices

 10.1 Returning Data from Delegate and DAO classes

Single TO object should be used for single row queries retrievals. For multiple
row retrievals, an array list should be used for storing retrieved data.

In application template, when the company list resource is requested, the DAO
function returns a collection of TOs (CompanyDAO.java loadCompanyList() :
Collection) just like the CompanyDelegate class (getCompanyList function). A Single
TO is returned when invoking the getCompanyDetails function in the
CompanyDelegate class

 10.2 Store Application Messages Externally

Application messages should be stored on a database table for easy updating
of the applications message without redeploying the application. For not overwhelming
the web application with too many database calls, the notion of a Cache Data Manager
utility should be created. This utility retrieves the data from the database and caches it
in memory for fast and easy accessibility by other components of the application. A
cached data manager utility should provide the functionality of refreshing the contents
of the cached data. The CacheUtil class demonstrates the structure and functionality
of a cached data manager class. It implements the singleton pattern.

In application template, CacheUtil retrieves all the application messages and
loads them in memory. It also loads the state names with their code values.

 10.3 Application Messages

To better manage application messages, they have been abstracted into a Java
Bean class called ApplicationMessageTO. This class contains three instance
variables:

• Msg_id: A unique identifier to make messages distinctive.
• Msg_text: The actual text message
• Msg_ctgry_cd: The category code for the current message.

The message category code could be either "Severe", "Error" or "Success". The
"Severe" category identifies those fatal messages that make the application
unavailable (e.g. database is down). The Error category represents messages that are
errors, but they are handled by the application and they are returned to the user (user
entered a date that doesn't fall in a certain timeframe). Success errors are supposed to
report that operations have been executed successfully.

23

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

 10.4 Displaying Application Messages

Application Template has a unique point where application messages are
displayed. This section is located in the composite view container
(public_html/index.jsp). Having a single point for displaying application messages
requires less maintenance effort when making formatting changes to this section.

 10.5 Error Handling

There are two points where exceptions are being handled: the front controller
and the delegate classes.

The front controller class is responsible for catching any unhandled exception
that occurred in the handlers or run time errors

Delegate classes handle any exceptions that are internally thrown or
propagated from DAOs. Propagation of exceptions from Delegate classes to handler
classes should be avoided because delegate classes implement a messaging
mechanism with handlers to determine the status of any function invocation in the
delegate.

To help out with messaging mechanism the handlers extend the Request
handler object in the common Jar library which provides helper functions to perform
message checking between handlers and delegates.

The mechanism logic is as follows: delegate classes should have a retrievable
instance variable to identify the status of an instantiated delegate object. As an
example, application template's delegates have an ApplicationMessageTO instance
variable. If the delegate's instance variable is null or contains an
ApplicationMessageTO whose category code is "success" or "warn" then that means
the instantiated delegate object hasn't experienced any issues during the invocation.
But, if the category code is "Error" or "Severe" then that would mean delegate’s
invocation experienced issues and handler class needs to be informed to take further
action.

 10.6 Validation

It is recommended to create a helper validation class to isolate the validation
business rules from the delegates. Application Template contains TemplateValidator, a
class that is composed of all the validation routines for the application.
TemplateValidator takes advantage of using the Validate class, which contains a set of
functions that determine if a string is formatted appropriately according to a regular
expression. TemplateValidator class samples how to use the API of Validate.

24

V:\ADAM Bureau\ADAM OPS & MAINT\40 SYSTEMS\LICENSING\ALS6809-
DevStandards\CommonJar\ApplicationTemplate_2.0.pdf

11. Check List for Running Application Project

• Edit Log4j configuration file (conf/log4j.xml)

o Edit “to” and “file” nodes. If this is omitted, email error alerts will be missed
o Refer to “Setting up Log4j” section on this document

• Edit Application Configuration File (conf/app_conf.xml)
o Edit database connection settings
o Edit intranet variable to define which portion of the application should start
o Edit Email settings if in need of using Emailer class

• Edit “Page Properties” files while pages are being added to the application
(conf/PageProperties.internet.xml and conf/PageProperties.intranet.xml).

• Application template uses JSTL (java standard tag library). Jdeveloper Preview
Version 10.13 needs a small configuration tweak before executing JSP pages that
include JSTL. File JDEV_HOME/j2ee/home/jsp/lib/taglib/standard.jar needs to be
deleted because it generates a class loading mismatch with the WEB-
INF/lib/standard.jar included in the web app that is being executed.

